Skip to main content
Log in

Quantized magnetic flux through the excited-state orbit of the hydrogen atom

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We investigate the quantized magnetic fluxes through the excited state orbits corresponding to the | n, l, m j 〉 states of the hydrogen atom in the absence of an external magnetic field. The sources of the magnetic fields are taken to be that of the proton magnetic moment µp and the electron magnetic moment µe (or µj), which has two components, namely, the orbital part µl and the spinning part µs. We show that the quantized magnetic fluxes through these orbits take the form Φ(n, l, m j ) = [n-l-m j 0 = [n-l-m l -m s 0, where Φ0 = hc/e is the flux quanta. The present result gives access to the spin flip-floppings in the optical transitions of the hydrogen atom. It is also believed to be of significant help in understanding the recent observations of spin relaxation in excitonic transitions (such as 1s → 2p or 2p → 3d) in nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Saglam and B. Boyacioglu, J. Russ. Laser Res., 28, 142 (2007).

    Article  Google Scholar 

  2. F. London, Superfluids, Wiley, New York (1950).

    MATH  Google Scholar 

  3. L. Onsager, in: Proceedings of the International Conference on Theoretical Physics (Kyoto & Tokyo, September 1953), Science Council of Japan, Tokyo (1954), p. 935.

    Google Scholar 

  4. M. Saglam and B. Boyacioglu, Int. J. Mod. Phys. B, 16, 607 (2002).

    Article  ADS  Google Scholar 

  5. M. Saglam, O. Yilmaz, and Z.Z. Aydin, J. Old New Concepts Phys., 4, 147 (2007).

    Google Scholar 

  6. F. Constantinescu and E. Magyari, Problems in Quantum Mechanics, Pergamon, Oxford (1971), pp. 159–253; 396–404.

    Google Scholar 

  7. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New York (1964), pp. 52–57.

    Google Scholar 

  8. R. P. Martinez-y-Romero, Am. J. Phys., 68, 1050 (2000).

    Article  ADS  Google Scholar 

  9. K. K. Wan and M. Saglam, Int. J. Theor. Phys., 45, 1171 (2006).

    Article  MATH  Google Scholar 

  10. M. R. Spiegel, Advanced Calculus, a Schaum’s Outline Series, McGraw-Hill, New York (1974), p. 153, Fig. 7-27b.

    Google Scholar 

  11. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison-Wesley, New York (1965), Vol. 3, p. 21–11; 21–6; 21–7; § 34–2, pp. A3–A4.

    MATH  Google Scholar 

  12. K. K. Wan, From Micro to Macro Quantum Systems: A Unified Treatment with Superselection Rules and Its Applications, Imperial College Press, London (2006), pp. 480–495.

    Google Scholar 

  13. J. D. Jackson, Classical Electrodynamics, Wiley, New York (1999), pp. 183–187; 193; 186–187.

    MATH  Google Scholar 

  14. P. Lorrain and D. Corson, Electromagetic Fields and Waves, W. H. Freeman, San Francisco (1970), § 8.4.2, pp. 345–346.

    Google Scholar 

  15. K. K. Wan and F. E. Harrison, Phys. Lett. A, 174, 1 (1993).

    Article  ADS  Google Scholar 

  16. D. W. Snoke, W. W. Ruhle, K. Kohler, and K. Ploog, Phys. Rev. B, 55, 13789 (1997).

    Google Scholar 

  17. W. Heller and U. Bockelmann, Phys. Rev. B, 55, R4871 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Manuscript submitted by the authors in English first on February 5, 2007 and in final form on February 14, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saglam, M., Boyacioglu, B., Saglam, Z. et al. Quantized magnetic flux through the excited-state orbit of the hydrogen atom. J Russ Laser Res 28, 267–271 (2007). https://doi.org/10.1007/s10946-007-0015-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-007-0015-6

Keywords

Navigation