Skip to main content
Log in

Topology-Based Prediction of Pathway Dysregulation Induced by Intense Terahertz Pulses in Human Skin Tissue Models

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The strong interaction between terahertz (THz) radiation and biological systems has motivated the development of several biomedical technologies, including imaging and spectroscopy applications with promising potential for improved disease diagnosis. This interaction mechanism also implies that external excitation with intense pulses of THz energy could couple to important biological structures and induce significant downstream phenotypic effects. In this study, we expose human skin tissue models to a prolonged train of high-intensity THz pulses and measure the resulting global differential gene expression. From these data, signal pathway perturbation analysis identified pathways that are predicted to be significantly dysregulated, including the cytokine-cytokine receptor interaction and glioma pathways, and further identified the gene-level mechanisms predominantly responsible. These results indicate that induction of an inflammatory-like response and suppression of division/differentiation in cancer are possible. These effects could be further explored and characterized in different types of normal and cancerous tissues to determine potential novel clinical applicability of intense THz pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Son, J.-H. (2014). Terahertz Biomedical Science & Technology. Boca Raton, FL: CRC Press. Print.

    Book  Google Scholar 

  2. Cheon, H., Yang, H.-J., & Son, J.-H. Toward Clinical Cancer Imaging Using Terahertz Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics. 23(4): 2017.

  3. Ashworth, P.C., Pickwell-MacPherson, E., Provenzano, E., Pinder, S.E., Purushotham, A.D., Pepper, M., & Wallace, V.P. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Optics Express. 17(15): 12444–12454, 2009.

  4. Wallace, V.P., Fitzgerald, A.J., Shankar, S., Flanagan, N. Pye, R., Cluff, J., & Arnone, D.D. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. British Journal of Dermatology. 151(2): 424–432, 2004.

    Article  Google Scholar 

  5. Pickwell-MacPherson, E. & Wallace, V.P. Terahertz pulsed imaging – A potential medical imaging modality? Photodiagnosis and Photodynamic Therapy. 6(2): 128–134, 2009.

    Article  Google Scholar 

  6. Teraview Application Note. Using the TPS Spectra 3000 as a Tool for the Investigation of Cancers: Using the Hand-held Probe to Investigate Breast Cancer. 2012.

  7. Eadie, L., Reid, C., Fitzgerald, A., & Wallace, V. Optimizing multi-dimensional terahertz imaging analysis for colon cancer diagnosis. Expert Systems with Applications. 40(6): 2043–2050, 2013.

    Article  Google Scholar 

  8. Wilmink, G.J. & Grundt, J. E. Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation. Journal of Infrared, Millimeter, and Terahertz Waves. 32: 1074–1122, 2011.

    Article  Google Scholar 

  9. Romanenko, S., Begley, R., Harvey, A., Hool, L., & Wallace, V. The interaction between electromagnetic fields at megahertz, gigahertz, and terahertz frequencies with cells, tissues, and organisms: risks and potential. Journal of Royal Society Interface. 14: 20170585. https://doi.org/10.1098/rsif.2017.0585

  10. Echchgadda, I., Grundt, J.E., Cerna, C.Z., Roth, C.C., Payne, J.A., Ibey, B.L., & Wilmink, G.J. Terahertz Radiation: A Non-contact Tool for the Selective Stimulation of Biological Responses in Human Cells. IEEE Transactions on Terahertz Science and Technology. 6(1): 54–68, 2016.

    Article  Google Scholar 

  11. Echchgadda, I., Cerna, C.Z., Sloan, M.A., Elam, D.P., & Ibey, B.L. Effects of Different Terahertz Frequencies on Gene Expression in Human Keratinocytes. Proc. Of SPIE. Optical Interactions with Tissue and Cells XXVI. 9321: 1–9, 2015.

    Google Scholar 

  12. Titova, L.V., Ayesheshim, A.K., Golubov, A., Rodriguez-Juarea, R., Woycicki, R., Hegmann, F.A., & Kovalchuk, O. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue? Scientific Reports. 3(2362): 1–6, 2013.

    Google Scholar 

  13. Gallerano, G.P. et al. THz-BRIDGE: Final Report. Quality of Life Management/Living Resources. 2004.

  14. Bock, J., Fukuyo, Y., Kang, S., Phipps, M.L., Alexandrov, L.B., Rasmussen, K.O., Bishop, A.R., Rosen, E.D., Martinez, J.S., Chen, H.-T., Rodriguez, G., Alexandrov, B.S., Usheva, A. Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation. PLoS One. 5(12): 1–6, 2010.

    Article  Google Scholar 

  15. Titova, L.V., Ayesheshim, A.K., Golubov, A., Fogen, D., Rodriguez-Juarea, R., Hegmann, F.A., & Kovalchuk, O. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue. Biomedical Optics Express. 4(4): 559–568, 2013.

    Article  Google Scholar 

  16. Amicis, A., De Sanctis, S., Di Cristofaro, S., Franchini, V., Lista, F., Regalbuto, E., Giovenale, E., Gallerano, G.P., Nenzi, P., Bei, R., Fantini, M., Benvenuto, M., Masuelli, L., Coluzzi, E., Cicia, C., & Sgura, A. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 793: 150–160, 2015.

    Article  Google Scholar 

  17. Hoffman, M.C. “Intense laser-based THz sources” in The 2017 Terahertz Science and Technology Roadmap. Journal of Applied Physics D. 50: 6–7, 2017.

  18. Hebling, J., Almasi, G., & Kozma, I.Z. Velocity matching by pulse front tilting for large-area THz-pulse generation. Optics Express. 10(21): 1161–1166, 2002.

    Article  Google Scholar 

  19. Yeh, K.-L., Hoffman, M.C., Hebling, J., & Nelson, K.A. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters. 90(171121): 1–3, 2007.

    Google Scholar 

  20. Lee, Y. (2009). Principles of Terahertz Science and Technology. New York, NY: Springer. Print.

    Google Scholar 

  21. Hirori, H., Doi, A., Blanchard, F., & Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters. 98(9): 1–3, 2011.

  22. Acheva, A., Aerts, A., Rombouts, Ch., Baatout, S., Salomaa, S., Manda, K., Hildebrandt, G., & Kamarainen, M. Human 3-D tissue models in radiation biology: current status and future perspectives. International Journal of Radiation Research. 12(2): 81–98, 2014.

    Google Scholar 

  23. Voichita C, Ansari S and Draghici S (2017). ROntoTools: R Onto-Tools suite. R package version 2.6.0.

  24. Tarca, A.L., Draghici, S., Khatri, P., Hassan, S.S., Mittal, P., Kim, J.-s., Kim, C.J., Kusanovic, J.P., & Romero, R. A novel signaling pathway impact analysis. Bioinformatics. 25(1): 75–82, 2009.

    Article  Google Scholar 

  25. Voichita, C., Donato, M., & Draghici, S. Incorporating gene significance in the impact analysis of signaling pathways. 11 th International Conference on Machine Learning and Applications. ICMLA 2012: 126–131, 2012.

  26. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research. 28(1): 29–34, 2000.

    Article  Google Scholar 

  27. Website: http://www.genome.jp/kegg/kegg1.html [Electronic access]

  28. Alexandrov, B. et al. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells. Scientific Reports. 3(1184): 1–8, 2013.

    Google Scholar 

  29. Kim, K.-T., Park, J., Jo, S.J., Jung, S., Kwon, O.S., Gallerano, G.P., Park, W.-Y., & Park, G.-S. High-power femtosecond-terahertz pulse induces a wound response in mouse skin. Scientific Reports. 3(2296): 1–7, 2013.

    Google Scholar 

  30. Williams, R. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation, and differentiation. Physics in Medicine and Biology. 58(2): 373–391, 2013.

    Article  Google Scholar 

  31. Takashima, A. & Faller, D. Targeting the RAS Oncogene. Expert Opinion on Therapeutic Targets. 17(5): 507–31. 2013.

    Article  Google Scholar 

  32. Fecher, L.A., Amaravadi, R.K., & Flaherty, K.T. The MAPK pathway in melanoma. Current Opinion in Oncology. 20(2): 183–189, 2008.

    Article  Google Scholar 

  33. Pandey, V., Bhaskara, V.K., & Babu, P.P. Implications of Mitogen-Activated Protein Kinase Signaling in Glioma. Journal of Neuroscience Research. 94(2): 114–127, 2016.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from NSERC, CFI, and the AITF Strategic Chairs Program, and technical assistance from Beipei Shi, Greg Popowich, Matt Reid, Rocio Rodriguez-Juarez, Rommy Rodriguez-Juarez, Andrey Golubov, and Yaroslav Ilnytskyy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cameron M. Hough.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hough, C.M., Purschke, D.N., Huang, C. et al. Topology-Based Prediction of Pathway Dysregulation Induced by Intense Terahertz Pulses in Human Skin Tissue Models. J Infrared Milli Terahz Waves 39, 887–898 (2018). https://doi.org/10.1007/s10762-018-0512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0512-4

Keywords

Navigation