Skip to main content
Log in

Cusp Guns for Helical-Waveguide Gyro-TWTs of a High-Gain High-Power W-Band Amplifier Cascade

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The evaluation, design, and simulations of two different electron guns generating the beams for W-band second cyclotron harmonic gyro-TWTs forming a high-gain powerful amplifier cascade are presented. The optimum configurations of the systems creating nearly axis-encircling electron beams having velocity pitch-factor up to 1.5, voltage/current of 40 kV/0.5 A, and 100 kV/13 A with acceptable velocity spreads have been found and are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gaponov-Grekhov, A.V., Granatstein, V.L., Application of high-power microwaves, (Artech House, Boston, London, 1994).

  2. Chu, K.R., Rev. Mod. Phys., 76, 489 (2004).

    Article  Google Scholar 

  3. G. Nusinovich, Introduction to the physics of gyrotrons. (The Johns Hopkins University Press, Baltimore and London, 2004)

    Google Scholar 

  4. Thumm, M., Int. J. Infrared and Millimeter Waves, 22, 377 (2001)

    Article  Google Scholar 

  5. Samsonov, S.V., Bogdashov, A.A., Denisov, et al., IEEE Trans. Electron Devices, 64, 1297 (2017).

  6. S.V. Samsonov, A.A. Bogdashov, G.G. Denisov, et al., W-band Helical-Waveguide Gyro-TWTs Yielding High Gain and High Output Power: Design and Simulations, (18th Int. Vacuum Electronics Conference (IVEC 2017), April 2017, London, UK).

  7. S.V Mishakin,., S.V. Samsonov, Thermal analysis of gyro-amplifiers with helically corrugated waveguides, EPJ Web of Conferences, 141, 04040 (2017) https://doi.org/10.1051/epjconf/201714904040

  8. M.J. Rhee, W.W. Destler. Phys. Fluids., 17, 1574 (1974).

    Google Scholar 

  9. D. Gallagher, M. Barsanti, F. Scafuri, C. Armstrong. IEEE Trans. on Plasma Sci., 28, 695 (2000)

    Article  Google Scholar 

  10. V.L. Bratman, Yu.K. Kalynov, V.N Manuilov, S.V. Samsonov, Electron-optical system for a large-orbit gyrotron Technical Physics, 50, 1611 (2005) (https://doi.org/10.1134/1.2148563).

    Article  Google Scholar 

  11. C.R. Donaldson, W. He, A.W. Cross, et al., IEEE Trans. Plasma Sci., 37, 2153 (2009).

    Article  Google Scholar 

  12. C.R. Donaldson, W. He, A.W. Cross et al., Appl. Phys. Lett., 96, 141501 (2010).

    Article  Google Scholar 

  13. S. Sabchevski, T. Idehara, I. Ogawa, et al., Int. J. Infrared and Millimeter Waves, 21, 1191 (2000)

    Article  Google Scholar 

  14. Idehara, T., Manuilov, V., Watanabe, O. et al, Int. J. Infrared and Millimeter Waves, 25, 3 (2004).

    Article  Google Scholar 

  15. V.L. Bratman, Yu.K. Kalynov, V.N. Manuilov PRL, 102, 245101, (2009).

  16. C.H. Du, T.H. Chang, P.K. Liu, et al., IEEE Trans. Electron Devices 59, 3635 (2012).

    Article  Google Scholar 

  17. V.L. Bratman, G.G. Denisov, S.V. Samsonov, et al., Radiophysics and Quantum Electronics, 50, 95 (2007).

    Article  Google Scholar 

  18. S.V. Samsonov, I.G. Gachev, G.G. Denisov, et al., IEEE Trans. Electron Devices, 61, 4264 (2014).

    Article  Google Scholar 

  19. S.B. Harriet, D.B. McDermott, D.A. Gallagher, and N.C. Luhmann, IEEE Trans. Plasma Sci., 30, 909 (2002).

    Article  Google Scholar 

  20. W. He, C.R. Donaldson, L. Zhang, Phys. Rev. Lett., 119, 184801 (2017)

    Article  Google Scholar 

  21. W. He, C.R. Donaldson, L. Zhang Phys. Rev. Lett., 110, 165101 (2013).

    Article  Google Scholar 

  22. V.L. Bratman, Yu. K. Kalynov, V.N. Manuilov, J. Commun. Technol. El., 56, 500 (2011)

    Article  Google Scholar 

  23. P.V. Krivosheev, V.K. Lygin, V.N. Manuilov, Sh.E. Tsimring, Int. J. Infrared and Millimeter Waves, 22, 1119 (2001).

    Article  Google Scholar 

  24. V.K. Lygin, V.N. Manuilov, Sh.E. Tsimring “Effective code for numerical simulation of the helical relativistic electron beam”, Proceedings of the 11-th International Conference on High Power Particle Beams, Prague, Czech Republic, June 10–14, 1996, vol.1, pp.385–388.

  25. CST Particle Studio Overview. https://www.cst.com/Products/CSTPS Accessed 5 December 2017:

  26. R.L. Ives, L.R. Falce, G. Miram, and G. Collins. IEEE Trans. Plasma Sci., 40, 1299 (2012).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation under Project # 16-19-10332.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Mishakin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuilov, V.N., Samsonov, S.V., Mishakin, S.V. et al. Cusp Guns for Helical-Waveguide Gyro-TWTs of a High-Gain High-Power W-Band Amplifier Cascade. J Infrared Milli Terahz Waves 39, 447–455 (2018). https://doi.org/10.1007/s10762-018-0473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0473-7

Keywords

Navigation