Skip to main content
Log in

Iron Tolerance in Calla Lilies (Zantedeschia aethiopica)

Eisentoleranz von Calla (Zantedeschia aethiopica)

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Excess iron in soils affects many agricultural areas worldwide, causing great losses in cultivated plants particularly in waterlogged environments. Plants, such as the calla lily (Zantedeschia aethiopica), which grows in such wetlands, have been widely used for the treatment of wastewater. White calla lily plants were grown hydroponically from seeds in a greenhouse in Tunja, Colombia, under either of three different levels of iron (0, 100 or 200 ppm Fe) to evaluate the plant’s tolerance to excess iron. The total dry mass production, water uptake, water use efficiency (WUE), dry matter partitioning and root to shoot ratio were recorded four months after transplanting. The dry mass production per plant decreased as the iron level increased. Although water uptake decreased inversely proportional to the iron level, the WUE was not affected by iron. On the other hand, iron affected dry matter partitioning to the plant organs, accumulating more dry matter in the roots than in the shoot with higher iron levels. Hence, we suggest that the calla plant is moderately tolerant to excess iron and would be appropriate for the phytoremediation of wetlands contaminated with this metal.

Zusammenfassung

Übermäßige Eisengehalte landwirtschaftlich genutzter Böden können weltweit besonders auf kulturstaunassen Böden zu Schäden an den angebauten Kulturen führen. Pflanzen, wie die Lilienart Calla (Zantedeschia aethiopica), die in Feuchtgebieten wächst, kann zur Wasserreinigung genutzt werden. Daher wurden Callasämlinge in Hydrokultur in einem Gewächshausversuch in Tunja, Kolumbien einer von drei Eisenkonzentrationen ausgesetzt (0, 100 oder 200 ppm Fe), um die Eisentoleranz der Pflanze zu untersuchen. Trockenmassebildung und -verteilung sowie Wasseraufnahme, Wasserausnutzungs- (WUE) und Transpirationskoeffizient nach vier Monaten Wachstum dienten als Bewertungsmaßstab. Die Wasseraufnahme stieg und die Trockenmassebildung sank (um 25 % bzw. 51 %) mit zunehmender Eisenkonzentration (von 0 auf 100 bzw. 200 ppm x), ohne den WUE zu verändern, und die Trockensubstanzverteilung änderte sich derart, dass mehr Photoassimilate von den Blättern zu den Wurzeln transportiert wurden. Die Ergebnisse deuten auf eine moderate Eisentoleranz der Callapflanzen und ihre Eignung zur Minderung der Eisenkontamination in Feuchtgebieten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu MB, Tucker ES, Harding SS, Sesay JS (1989) Cultural practices to reduce iron toxicity in rice. Int Rice Res Newsl 14:19–19

    Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice-condition and management concepts. J Plant Nutr Soil Sci 168:558–573

    Article  CAS  Google Scholar 

  • Belmont MA, Metcalfe CD (2003) Feasibility of using ornamental plants (Zantedeschia aethiopica) in subsurface flow treatment wetlands to remove nitrogen, chemical oxygen demand and nonylphenolethoxylate surfactants—a laboratory-scale study. Ecol Eng 21:233–247

    Article  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res 112:119–123

    Article  Google Scholar 

  • Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F (2010) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105:811–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen BC, Lai HY, Juang KW (2012) Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotox Environ Safe 80:393–400

    Article  CAS  Google Scholar 

  • Clark CJ, Boldingh HL (1991) Biomass and mineral nutrient partitioning in relation to seasonal growth of Zantedeschia. SciHortic 47: 125–135

    CAS  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    Article  CAS  PubMed  Google Scholar 

  • Dufey I, Hakizimana P, Draye X, Lutts S, Bertin P (2009) QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica 167:143–160

    Article  CAS  Google Scholar 

  • Fageria NK (1988) Influence of iron on nutrient uptake by rice. Int Rice Res Newsl 13:20–21

    Google Scholar 

  • Funnell KA (1993) Dry matter partitioning in Zantedeschia K. Spreng as influenced by temperature and photosynthetic photon flux. Thesis presented for the degree if Doctorate of Philosopy in Horticultural Science. Massey University, Palmerston North, New Zeland

  • Hunt R (1982) Plant growth curves. The functional approach to plant growth analysis. Edward Arnold, London

    Google Scholar 

  • Kobayashi T, Nishizawa NK (2012). Iron uptake translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    Article  CAS  PubMed  Google Scholar 

  • Lantin RS, Neue HU (1989) Iron toxicity: a nutritional disorder in wetland rice. 17th Irrigated Rice Meeting. Brazil. 26–30 Sep. 1989. Lavoura-Arrozeira 42:3–8

    Google Scholar 

  • Marschner H (1995). Mineral nutrition of higher plants, 2nd edn. Academic Press:London

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Naithani KJ, Ewers BE, Pendall E (2012) Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem. J Hydrol 464–465:176–185

    Article  Google Scholar 

  • Orjuela-Matta HM, Rubiano Y, Camacho-Tamayo JH (2010) Comportamiento de la infiltración en un Oxisol. Rev UDCA Act & Div Cient 13(2):31–39

    Google Scholar 

  • Peña-Olmos J, Casierra-Posada F (2013) Photochemical efficiency of photosystem II (PSII) in broccoli plants (Brassica oleracea var Italica) affected by excess iron. Orinoquia 17(1):15–22

    Google Scholar 

  • Pereira EG, Oliva MA, Rosado-Souza L, Mendes GC, Colares DS, Stopato CH, Almeida AM (2013) Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Sci 201–202:81–92

    Article  PubMed  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Avila JJ, Almansa EF, Ortega-Achury SL (2011) Soil Erosion and Nutrient Losses in Highly Degraded Soils (Oxisols) of the Eastern Savannas of Colombia. Proceedings International Symposium on Erosion and Landscape Evolution ASABE Specialty Conference. Anchorage, Alaska: American Society of Agricultural and Biological Engineers (ASABE)

  • Wareing PF, Patrick J (1975) Source-sink relations and the partition of assimilates in the plant, pp. 481–499. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge

    Google Scholar 

  • Wibbe M, Blanke MM (1995) Effects of defruiting on source-sink relationship, carbon budget, leaf carbohydrae content and water use efficiency of apple trees. Physiol Plant 94:529–533

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Zurita F, Belmont MA, De Anda J, Cervantes-Martinez J (2008) Stress detection by laser-induced fluorescence in Zantedeschia aethiopica planted in subsurface flow treatment wetlands. Ecol Eng 33:110–118

    Article  Google Scholar 

Download references

Acknowledgements

The team gratefully acknowledges the generous support of the Research Directorate (Dirección de Investigaciones – DIN) of the Pedagogical and Technological University of Colombia (UPTC) for providing us with the funding and opportunity to conduct this research project. We also gratefully acknowledge matching support from the members of the Research Group in Plant Ecophysiology (Grupo Ecofisiología Vegetal) of the Faculty of Agricultural Sciences of the UPTC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fánor Casierra-Posada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casierra-Posada, F., Blanke, M. & Guerrero-Guío, J. Iron Tolerance in Calla Lilies (Zantedeschia aethiopica). Gesunde Pflanzen 66, 63–68 (2014). https://doi.org/10.1007/s10343-014-0316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-014-0316-y

Keywords

Schlüsselwörter

Navigation