Skip to main content
Log in

Hyphenating Supramolecular Solvents and Liquid Chromatography: Tips for Efficient Extraction and Reliable Determination of Organics

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Supramolecular solvents (SUPRASs) are nanostructured liquids produced by the self-assembly of amphiphiles at the molecular, nano and micro scale that offer excellent opportunities to be tailored through the bottom-up approach. They have a great potential for the setting-up of generalized sample treatments and multiresidue analysis due to their multi-binding capacity and tunability. Efficient extraction schemes can be developed thanks to the variety of interactions (dispersive, ionic, polar, etc.) they offer for solute solubilization. SUPRASs are simply synthesized by spontaneous processes and are considered as green alternatives to typical organic solvents (low toxicity, flammability, etc.). This review highlights those theoretical and practical aspects related to the synthesis and application of SUPRASs on which one should focus to exploit their benefits for the setting-up of efficient and reliable analytical schemes. It aims to provide a practical guide for SUPRAS selection and optimization in the analysis of organics by liquid chromatography (LC) separation and common LC detectors. Theoretical and operational aspects of SUPRAS are discussed with the aim of providing fundamental knowledge to potential users and facilitate implementation of SUPRAS-based methods in laboratories. Although the appealing power of self-assembly to give tailored SUPRASs remains largely unexplored, advances and opportunities regarding tailored SUPRAS are highlighted.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caballo C, Sicilia MD, Rubio S (2017) Supramolecular solvents for green chemistry. In: Pena-Pereira F, Tobiszewski M (eds) The application of green solvents in separation processes. Elsevier, Amsterdam

    Google Scholar 

  2. Watanabe H, Tanaka H (1978) A non-ionic surfactant as a new solvent for liquid–liquid extraction of Zn(II) with 1-(2-pyridylazo)-2-naphthol. Talanta 25:585–589

    Article  CAS  PubMed  Google Scholar 

  3. Hinze WL, Pramauro E (1993) A critical review of surfactant-mediated phase separations (cloud-point extractions)—theory and applications. Crit Rev Anal Chem 24:133–177

    Article  CAS  Google Scholar 

  4. Ballesteros-Gómez A, Sicilia MD, Rubio S (2010) Supramolecular solvents in the extraction of organic compounds. A review. Anal Chim Acta 677:108–130

    Article  CAS  PubMed  Google Scholar 

  5. Hagarová I (2017) Cloud point extraction utilizable for separation and preconcentration of (ultra)trace elements in biological fluids before their determination by spectrometric methods: a brief review. Chem Pap 71:869–879

    Article  CAS  Google Scholar 

  6. Melnyka A, Namieśnika J, Wolska L (2015) Theory and recent applications of coacervate-based extraction techniques. Trends Anal Chem 71:282–292

    Article  CAS  Google Scholar 

  7. Hagarova I, Urik M (2016) New approaches to the cloud point extraction: utilizable for separation and preconcentration of trace metals. Curr Anal Chem 12:87–93

    Article  CAS  Google Scholar 

  8. Raynie DE (2016) Surfactant-mediated extractions, Part 1: cloud-point extraction. LC GC Eur 29:36–38

    CAS  Google Scholar 

  9. Samaddar P, Sen K (2014) Cloud point extraction: a sustainable method of elemental preconcentration and speciation. J Ind Eng Chem 20:1209–1219

    Article  CAS  Google Scholar 

  10. López-Jiménez FJ, Lunar ML, Sicilia MD, Rubio S (2014) Supramolecular solvents in the analytical process. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 1–16

    Google Scholar 

  11. Menger FM, Peresypkin AV, Caran KL, Apkarian RP (2000) A sponge morphology in a elementary coacervate. Langmuir 16:9113–9116

    Article  CAS  Google Scholar 

  12. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) Potential of supramolecular solvents for the extraction of contaminants in liquid foods. J Chromatogr A 1216:530–539

    Article  CAS  PubMed  Google Scholar 

  13. Ballesteros-Gómez A, Rubio S (2012) Environment-responsive alkanol-based supramolecular solvents: characterization and potential as restricted access property and mixed-mode extractants. Anal Chem 84:342–349

    Article  CAS  PubMed  Google Scholar 

  14. Evans F, Wennerström H (1999) The colloidal domain, where physics, chemistry, biology, and technology meet, 2nd edn. Wiley, New York

    Google Scholar 

  15. Steed JW, Turner DR, Wallace KJ (2007) Core concepts in supramolecular chemistry and nanochemistry. Wiley, Chichester

    Google Scholar 

  16. Lehn JM (2002) Toward complex matter: supramolecular chemistry and self-organization. Proc Natl Acad Sci USA 99:4763–4768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Merino F, Rubio S, Pérez-Bendito D (2003) Mixed aggregate-based acid-induced cloud-point extraction and ion-trap liquid chromatography–mass spectrometry for the determination of cationic surfactants in sewage sludge. J Chromatogr A 998:143–154

    Article  CAS  PubMed  Google Scholar 

  18. Ruiz FJ, Rubio S, Pérez-Bendito D (2004) Potential of coacervation processes for the extraction of amphiphiles (linear alkyl benzenesulphonates) from sewage sludge samples prior to liquid chromatography. J Chromatogr A 1030:109–115

    Article  CAS  PubMed  Google Scholar 

  19. Luque N, Ballesteros-Gómez A, van Leewen S, Rubio S (2012) A simple and rapid extraction method for sensitive determination of perfluoroalkyl substances in blood serum suitable for exposure evaluation. J Chromatogr A 1235:84–91

    Article  CAS  PubMed  Google Scholar 

  20. Caballo C, Costi EM, Sicilia MD, Rubio S (2012) Determination of supplemental feeding needs for astaxanthin and canthaxanthin in salmonids by supramolecular solvent-based microextraction an liquid chromatography-UV/VIS spectroscopy. Food Chem 133:1244–1249

    Article  CAS  Google Scholar 

  21. Caballo C, Sicilia MD, Rubio S (2015) Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography–tandem mass spectrometry. Talanta 134:325–332

    Article  CAS  PubMed  Google Scholar 

  22. Caballo C, Sicilia MD, Rubio S (2015) Enantioselective analysis of non-steroidal anti-inflammatory drugs in freshwater fish based on microextraction with a supramolecular liquid and chiral liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 407:4721–4731

    Article  CAS  PubMed  Google Scholar 

  23. Man BK-W, Lam MH-W, Lam PKS, Wu RSS, Shaw G (2002) Cloud-point extraction and preconcentration of cyanobacterial toxins (microcystins) from natural waters using a cationic surfactant. Environ Sci Technol 36:3985–3990

    Article  CAS  PubMed  Google Scholar 

  24. Garenne D, Navailles L, Nallet F, Grélard A, Dufourc EJ, Douliez J-P (2016) Clouding in fatty acid dispersions for charge-dependent dye extraction. J Coll Interf Sci 468:95–102

    Article  CAS  Google Scholar 

  25. Materna K, Szymanowski J (2002) Separation of phenols from aqueous micellar solutions by cloud point extraction. J Colloid Interf Sci 255:195–201

    Article  CAS  Google Scholar 

  26. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Renati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. López-Jiménez FJ, Rosales-Marcano M, Rubio S (2013) Restricted access property supramolecular solvents for combined microextraction of endocrine disruptors in sediment and simple cleanup prior to their quantitation by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1303:1–8

    Article  CAS  PubMed  Google Scholar 

  28. Lara AB, Caballo C, Sicilia MD, Rubio S (2018) Speeding up the extraction of hexabromocyclododecane enantiomers in soils and sediments based on halogen bonding. Anal Chim Acta 1027:47–56

    Article  CAS  PubMed  Google Scholar 

  29. Costi E, Sicilia MD, Rubio S (2010) Supramolecular solvents in solid simple microextractions: application to the determination of residues of oxolinic acid and flumequine in fish and shellfish. J Chromatogr A 1217:1447–1454

    Article  CAS  PubMed  Google Scholar 

  30. Costi E, Sicilia MD, Rubio S (2010) Multiresidue analysis of sulfonamides in meat by supramolecular solvent microextraction, liquid chromatography and fluorescence detection and method validation according to the 2002/657/EC decision. J Chromatogr A 1217:6250–6257

    Article  CAS  PubMed  Google Scholar 

  31. Alabi A, Caballero-Casero N, Rubio S (2014) Quick and simple treatment for multiresidue analysis of bisphenols, bisphenol diglycidyl ethers and their derivatives in canned food prior to liquid chromatography and fluorescence detection. J Chromatogr A 1336:23–33

    Article  CAS  PubMed  Google Scholar 

  32. Cardeñosa V, Lunar ML, Rubio S (2011) Generalized and rapid supramolecular solvent-based sample treatment for the determination of annatto in food. J Chromatogr A 1218:8996–9002

    Article  CAS  PubMed  Google Scholar 

  33. Carabias-Martínez R, Rodríguez-Gonzalo E, Moreno-Cordero B, Pérez-Pavón JL, García-Pinto C, Fernández Laespada E (2000) Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis. J Chromatogr A 902:251–265

    Article  PubMed  Google Scholar 

  34. Taechangam P, Scamehorn JF, Osuwan S, Rirksomboon T (2009) Effect of nonionic surfactant molecular structure on cloud point extraction of phenol from wastewater. Colloids Surf A 347:200–209

    Article  CAS  Google Scholar 

  35. Safonova EA, Mehling T, Storm S, Ritter E, Smirnova IV (2014) Partitioning equilibria in multicomponent surfactant systems for design of surfactant-based extraction processes. Chem Eng Res Des 92:2840–2850

    Article  CAS  Google Scholar 

  36. Caballo C, Sicilia MD, Rubio S (2013) Stereoselective quantitation of mecoprop and dichlorprop in natural waters by supramolecular solvent-based microextraction, chiral liquid chromatography and tandem mass spectrometry. Anal Chim Acta 761:102–108

    Article  CAS  PubMed  Google Scholar 

  37. Li JL, Chen BH (2003) Equilibrium partition of polycyclic aromatic hydrocarbons in a cloud-point extraction process. J Colloid Interface Sci 263:625–632

    Article  CAS  PubMed  Google Scholar 

  38. Casero I, Sicilia D, Rubio S, Pérez-Bendito D (1999) An acid-induced phase cloud point separation approach using anionic surfactants for the extraction and preconcentration of organic compounds. Anal Chem 71:4519–4526

    Article  CAS  Google Scholar 

  39. Ruiz FJ, Rubio S, Pérez-Bendito D (2007) Water-induced coacervation of alkyl carboxylic acid reverse micelles: phenomenon description and potential for the extraction of organic compounds. Anal Chem 79:7473–7484

    Article  CAS  PubMed  Google Scholar 

  40. Ballesteros-Gómez A, Ruiz FJ, Rubio S, Pérez-Bendito D (2007) Determination of bisphenols A and F and their diglycidyl ethers in wastewater and river water by coacervative extraction and liquid chromatography–fluorimetry. Anal Chim Acta 603:51–59

    Article  CAS  PubMed  Google Scholar 

  41. López-Jiménez FJ, Rubio S, Pérez-Bendito D (2008) Single-drop coacervative microextraction of organic compounds prior to liquid chromatography: theoretical and practical considerations. J Chromatogr A 1195:25–33

    Article  CAS  PubMed  Google Scholar 

  42. Moradi M, Yamini Y (2012) Application of vesicular coacervate phase for microextraction based on solidification of floating drop. J Chromatogr A 1229:30–37

    Article  CAS  PubMed  Google Scholar 

  43. Moradi M, Yamini Y, Rezaei F, Tahmasebi E, Esrafili A (2012) Development of a new and environment friendly hollow fiber-supported liquid phase microextraction using vesicular aggregate-based supramolecular solvent. Analyst 137:3549–3557

    Article  CAS  PubMed  Google Scholar 

  44. Giokas DL, Zhu Q, Pan Q, Chilvert A (2012) Cloud point-dispersive µ-solid phase extraction of hydrophobic organic compounds onto highly hydrophobic core-shell Fe2O3@C magnetic nanoparticles. J Chromatogr A 1251:33–39

    Article  CAS  PubMed  Google Scholar 

  45. Gao N, Wu H, Chang Y, Guo X, Zhang L, Du L, Fu Y (2015) Mixed micelle cloud point-magnetic dispersive µ-solid phase extraction of doxazosin and alfuzosin Spectrochim. Acta Mol Biomol Spectrosc 134:10–16

    Article  CAS  Google Scholar 

  46. Zohrabi P, Shamsipur M, Hashemi M, Hashemi B (2016) Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta 160:340–346

    Article  CAS  PubMed  Google Scholar 

  47. Moral A, Sicilia MD, Rubio S (2009) Determination of benzimidazolic fungicides in fruits and vegetables by supramolecular solvent-based microextraction/liquid chromatography/ fluorescence detection. Anal Chim Acta 650:207–213

    Article  CAS  PubMed  Google Scholar 

  48. Moral A, Sicilia MD, Rubio S (2009) Supramolecular solvent-based extraction of benzimidazolic fungicides from natural waters prior to their liquid chromatographic/fluorimetric determination. J Chromatogr A 1216:3740–3745

    Article  CAS  PubMed  Google Scholar 

  49. Pourreza N, Zareian M (2009) Determination of Orange II in food samples after cloud point extraction using mixed micelles. J Hazard Mater 165:1124–1127

    Article  CAS  PubMed  Google Scholar 

  50. García-Fonseca S, Rubio S (2016) Restricted access supramolecular solvents for removal of matrix-induced ionization effects in mass spectrometry: application to the determination of fusarium toxins in cereals. Talanta 148:370–379

    Article  CAS  PubMed  Google Scholar 

  51. Noorashikin MS, Mohamad S, Abas MR (2016) Determination of parabens in water samples by cloud point extraction and aqueous two-phase extraction using high-performance liquid chromatography. Desalin Water Treat 57:353–322 361

    Google Scholar 

  52. Salatti-Dorado JA, Caballero-Casero N, Sicilia MD, Lunar MD, Rubio S (2017) The use of a restricted access volatile supramolecular solvent for the LC/MS–MS assay of bisphenol A in urine with a significant reduction of phospholipid-based matrix effects. Anal Chim Acta 950:71–79

    Article  CAS  PubMed  Google Scholar 

  53. Luo X, Zheng H, Zhang Z, Wang M, Yanga B, Huang L, Wanga M (2018) Cloud point extraction for simultaneous determination of 12 phenolic compounds by high performance liquid chromatography with fluorescence detection. Microchem J 137:148–154

    Article  CAS  Google Scholar 

  54. Seebunrueng K, Dejchaiwatana C, Santaladchaiyakit Y, Srijaranai S (2017) Development of supramolecular solvent based microextraction prior to high performance liquid chromatography for simultaneous determination of phenols in environmental water. RSC Adv 7:50143–50149

    Article  CAS  Google Scholar 

  55. Yang Q, Chen X, Jiang X (2013) Liquid–liquid microextraction of nitrophenols using supramolecular solvent and their determination by HPLC with UV detection. Chromatographia 76:1641–1647

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge financial support from Spanish Ministry of Science, Innovation and Universities (Project CTQ2017-83823R). A. Ballesteros-Gómez acknowledges the funding from Spanish Ministry of Science, Innovation and Universities for a Ramón y Cajal contract (RYC-2015-18482).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soledad Rubio.

Ethics declarations

Conflict of Interest

A. Ballesteros-Gómez declares that she has no conflict of interest. L. Lunar declares that she has no conflict of interest. M.D. Sicilia declares that she has no conflict of interest. S. Rubio declares that she has no conflict of interest.

Research Involving Human and/or Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in Chromatographia’s 50th Anniversary Commemorative Issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballesteros-Gómez, A., Lunar, L., Sicilia, M.D. et al. Hyphenating Supramolecular Solvents and Liquid Chromatography: Tips for Efficient Extraction and Reliable Determination of Organics. Chromatographia 82, 111–124 (2019). https://doi.org/10.1007/s10337-018-3614-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3614-1

Keywords

Navigation