Skip to main content
Log in

Computer simulations to predict the availability of peptides with known HLA class I motifs generated by proteolysis of dengue fever virus (DFV) type 1 structural and nonstructural proteins in infected cells

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Cytotoxic T cells that recognize dengue fever viral (DFV) peptides were reported. To predict the cleavage pattern of DFV proteins by cytoplasmic proteasomes into nonapeptides with motifs fitting known HLA class I molecules, the computer program “Findpatterns” was used. In this study the combined amino acid motifs for proteolytic cleavages and the HLA class I haplotype-restricted peptides were analyzed. It was noted that putative peptides with motifs of HLA A2 and A68 were abundant compared with nonapeptides with motifs HLA A24, B8, B35, and B53. The possible interpretation of the computer analysis in explaining the cellular immune response in endogenous populations of endemic DF is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Porterfield J.S., Adv Virus Res31 335–355, 1986.

    Google Scholar 

  2. Halstead S.B., Science239 476–481, 1988.

    Google Scholar 

  3. Halstead S.B., Bull World Health Org58 1–21, 1990.

    Google Scholar 

  4. Becker Y., Virus Genes9 33–45, 1994.

    Google Scholar 

  5. Walker C., Selby M., Erickson A., Do D.C., Valensi J-P., and Van Nest G., Proc Natl Acad Sci USA89 7915–7918, 1992.

    Google Scholar 

  6. Becker Y., Virus Genes in press 1995.

  7. Bukowsky J.F., Kurane I., Lai C-J., Bray M., Falgout B., and Ennis F.A., J Virol63 5086–5091, 1989.

    Google Scholar 

  8. Hill A.B., Müllbacher A., Parrish C., Coia G., Westaway E.G., and Blanden R.V., J Gen Virol73 1115–1123, 1992.

    Google Scholar 

  9. Kast W.M., Roux L., Curren J., Blom H.J.J., Voordouw A.C., Meloen R.H., Kolakofsky D., and Melief C.J.M., Proc Natl Acad Sci USA88 2283–2287, 1991.

    Google Scholar 

  10. Chiewsilp P., McNair Scott R., and Bhamarapravati N., Am J Med Hyg30 1100–1105, 1981.

    Google Scholar 

  11. Devereaux J., Haberlin P., and Smithies O., Nucleic Acids Res12 387–395, 1984.

    Google Scholar 

  12. Bond J.S. and Butler P.E., Annu Rev Biochem56 333–364, 1987.

    Google Scholar 

  13. Becker Y., Virus Genes8 249–270, 1994.

    Google Scholar 

  14. Wei M.L. and Cresswell P., Nature356 443–446, 1993.

    Google Scholar 

  15. Falk K., Rotzschke O., Stevanovic S., Jung G., and Rammensee H.-G., Nature351 290–296, 1991.

    Google Scholar 

  16. Hunt D.F., Henderson R.A., Shabanowitz J., Skaguchi K., Michel H., Sevilik N., Cox A., and Engelhard, Science255 1261–1263, 1992.

    Google Scholar 

  17. Guo H.-C., Jardetsky T.S., Garrett R.P.J., Lane W.S., Strominger J.L., and Wiley D.C., Nature360 364–366, 1992.

    Google Scholar 

  18. Casanova T.L., Martinon F., Gournier H., Barra C., Pannetier C., Regnault A., Kouritsky P., Cerottini J.-C., and Maryanski J.L., J Exp Med177 811–820, 1993.

    Google Scholar 

  19. Jardetsky T.S., Lane W., Robinson R., Madden D., and Wiley D.C., Nature353 326–329, 1991.

    Google Scholar 

  20. Parker K.C., Dibrino M., Hull L., and Coligan J.F., J Immunol149 1896–1904, 1992.

    Google Scholar 

  21. Madden D.R., Gorga J.C., Strominger L.L., and Wiley D.C., Nature353 321–325, 1991.

    Google Scholar 

  22. Madden D.R., Gorga J.C., Strominger L.L., and Wiley D.C., Cell70 1035–1048, 1992.

    Google Scholar 

  23. Madden D.R., Garboczi D.N., and Wiley D.C., Cell75 693–708, 1993.

    Google Scholar 

  24. Townsend A., and Bodmer H., Annu Rev Immunol7 601–624, 1989.

    Google Scholar 

  25. Scorza-Smeraldi R., Fabio A., Lazzarin A., Eisera N., Warti Foppa C., Moroni M., and Zanussi C., Hum Immunol22 73–79, 1987.

    Google Scholar 

  26. Kaslow R.A., Duquesnoy R., Van Raden M., Kingsley L., Marrari L.C., Friedman H., Su S., Saah A.J., Detels R., Phair J., and Rinaldo C., Lancet335 927–930, 1990.

    Google Scholar 

  27. Wolf H., Modrow S., Motz M., Jameson B., Hermann G., and Fortsch B, CABIOS4 187–191, 1988.

    Google Scholar 

  28. Chou P.Y. and Fasman G.D., Ann Rev Biochem47 251–276, 1978.

    Google Scholar 

  29. Garnier J., Osguthorpe D.J., and Robson B., J Mol Biol120 97–120, 1978.

    Google Scholar 

  30. Fu J., Tan B.H., Yap E.H., Chan Y.C., Tan Y.H., Virol.188 953–958, 1992.

    Google Scholar 

  31. Coia G., Parker M.D., Speight G., Byrne M.E., and Westaway E.G., J Gen Virol69 1–21, 1988.

    Google Scholar 

  32. Chu M.C., O'Rourke E.J., and Trent D.W., J Gen Virol70 1701–1712, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, Y. Computer simulations to predict the availability of peptides with known HLA class I motifs generated by proteolysis of dengue fever virus (DFV) type 1 structural and nonstructural proteins in infected cells. Virus Genes 10, 195–203 (1995). https://doi.org/10.1007/BF01701808

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01701808

Key words

Navigation