Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 463 Accesses

Abstract

In this chapter, the technique of manipulating of electron beam phase space at optical wavelength has been systematically studied. After that, several novel high-gain FEL schemes, including the pre-density modulation (PDM), echo-enabled staged harmonic generation (EESHG), phase-merging enhanced harmonic generation (PEHG), mode-locking of seeded FEL, chirped pulse amplification of coherent harmonic generation (CPA-CHG), have been proposed and studied to improve the performance of SASE and HGHG. Theoretical and simulation studies for seeded FEL schemes with ultra-short seed laser pulses are presented to show the phase error multiplication process in harmonic generation schemes. We found that the slippage effect in the modulator can be used to slow down this multiplication process, which may aid in the production of transform-limited short-wavelength pulses for seeded FELs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng HX, Dai ZM (2010) Ultra-high order harmonic generation via a free electron laser mechanism. Chin Phys C 34(8):1140

    Article  ADS  Google Scholar 

  2. McNeil BWJ, Robb GRM, Poole MW (2005) Proceedings of 2005 particle accelerator conference (PAC2005), Knoxville, Tennessee, May 2005, p 1718

    Google Scholar 

  3. Allaria E, De Ninno G (2007) Soft-X-ray coherent radiation using a single-cascade free-electron laser. Phys Rev Lett 99(1):014801

    Article  ADS  Google Scholar 

  4. Jia Q (2008) Enhanced high-gain harmonic generation for x-ray free-electron laser. Appl Phys Lett 93(14):141102

    Article  ADS  Google Scholar 

  5. Xiang D, Stupakov G (2011) Triple modulator–chicane scheme for seeding sub-nanometer x-ray free-electron lasers. New J Phys 13(9):093028

    Article  Google Scholar 

  6. Feng C, Zhao Z (2010) Hard X-ray free-electron laser based on echo-enabled staged harmonic generation scheme. Chin Sci Bull 55(3):221–227

    Article  Google Scholar 

  7. Yu LH (1991) Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys Rev A 44(8):5178–5193

    Article  ADS  Google Scholar 

  8. Coisson R, MartiniF D (1982) Free electron coherent relativistic scatterer for U.V. generation. Phys Quant Electron 9:939–960

    Google Scholar 

  9. Reiche S (1999) GENESIS 1.3: a fully 3D time-dependent FEL simulation code. Nucl Instr Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 429(1): 243.248

    Google Scholar 

  10. Huang Z, Ding Y, Schroeder CB (2012) Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phys Rev Lett 109(20):204801

    Article  ADS  Google Scholar 

  11. Deng H, Feng C (2013) Using off-resonance laser modulation for beam-energy-spread cooling in generation of short-wavelength radiation. Phys Rev Lett 111(8):084801

    Article  ADS  Google Scholar 

  12. Feng C, Deng H, Wang D, Zhao Z (2014) Phase-merging enhanced harmonic generation free-electron laser. New J Phys 16(4):043021

    Article  Google Scholar 

  13. Feng C, Zhang T, Deng H, Zhao Z (2014) Three-dimensional manipulation of electron beam phase space for seeding soft x-ray free-electron lasers. Phys Rev Spec Top-Accel Beams 17(7):070701

    Article  ADS  Google Scholar 

  14. Floettmann K (1999) ASTRA User’s Manual. http://www.desy.de/mpyflo/ Astra_dokumentation

  15. Borland M (2001) Simple method for particle tracking with coherent synchrotron radiation. Phys Rev Spec Top-Accel Beams 4(7):070701

    Article  ADS  Google Scholar 

  16. Johnsson P, López-Martens R, Kazamias S et al (2005) Attosecond electron wave packet dynamics in strong laser fields. Phys Rev Lett 95(1):013001

    Article  ADS  Google Scholar 

  17. Remetter T, Johnsson P, Mauritsson J et al (2006) Attosecond electron wave packet interferometry. Nat Phys 2(5):323.326

    Google Scholar 

  18. Swoboda M, Fordell T, Klünder K et al (2010) Phase measurement of resonant two-photon ionization in helium. Phys Rev Lett 104(10):103003

    Article  ADS  Google Scholar 

  19. Thompson NR, McNeil BWJ (2008) Mode locking in a free-electron laser amplifier. Phys Rev Lett 100(20):203901

    Article  ADS  Google Scholar 

  20. Feng C, Chen J, Zhao Z (2012) Generating stable attosecond x-ray pulse trains with a mode-locked seeded free-electron laser. Phys Rev Spec Top-Accel Beams 15(8):080703

    Article  ADS  Google Scholar 

  21. Maine P, Strickland D, Bado P et al (1988) Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J Quantum Electron 24(2):398–403

    Article  ADS  Google Scholar 

  22. Wu J, Murphy JB, Emma P et al (2007) Interplay of the chirps and chirped pulse compression in a high-gain seeded free-electron laser. JOSA B 24(3):484–495

    Article  ADS  MathSciNet  Google Scholar 

  23. Li Y, Lewellen J, Huang Z et al (2002) Time-resolved phase measurement of a self-amplified free-electron laser. Phys Rev Lett 89(23):234801

    Article  ADS  Google Scholar 

  24. Yu LH, Johnson E, Li D et al (1994) Femtosecond free-electron laser by chirped pulse amplification. Phys Rev E 49(5):4480–4486

    Article  ADS  Google Scholar 

  25. Yu LH, Shaftan T, Liu D et al (2006) Chirped pulse amplification experiment at 800 nm. In: The 28th International free electron laser conference (FEL 2006), Berlin, Germany, Aug 2006, JACoW, p 194

    Google Scholar 

  26. Doyuran A, DiMauro L, Graves W et al (2004) Chirped pulse amplification of HGHG-FEL at DUV-FEL facility at BNL. Nucl Instrum Methods Phys Res, Sect A 528(1):467–470

    Article  ADS  Google Scholar 

  27. Feng C, Shen L, Zhang M, Wang D, Zhao Z, Xiang D (2013) Chirped pulse amplification in a seeded free-electron laser for generating high-power ultra-short radiation. Nucl Instrum Methods Phys Res, Sect A 712(113):119

    ADS  Google Scholar 

  28. Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge university press, New York, p 486

    Google Scholar 

  29. Wigner E (1932) On the quantum correction for thermodynamic equilibrium. Phys Rev 40(5):749–759

    Article  ADS  MATH  Google Scholar 

  30. Bastiaans MJ (1989) Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems. Optik 82(4):173–181

    Google Scholar 

  31. Kohler B, Squier J, DeLong K W et al (1995) Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating. Opt Lett 20(5): 483–485

    Google Scholar 

  32. Dorrer C, De Beauvoir B, Le Blanc C et al (1999) Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction. Opt Lett 24(22):1644–1646

    Article  ADS  Google Scholar 

  33. De Ninno G, Allaria E, Coreno M et al (2008) Generation of ultrashort coherent vacuum ultraviolet pulses using electron storage rings: a new bright light source for experiments. Phys Rev Lett 101(5):053902

    Article  ADS  Google Scholar 

  34. Xiang D, Wan W (2010) Generating ultrashort coherent soft x-ray radiation in storage rings using angular-modulated electron beams. Phys Rev Lett 104(8):084803

    Article  ADS  Google Scholar 

  35. Saldin EL, Schneidmiller EA, Yurkov MV (2002) Study of a noise degradation of amplification process in a multistage HGHG FEL. Opt Commun 202(1):169–187

    Article  ADS  Google Scholar 

  36. Ratner D, Fry A, Stupakov G et al (2012) Laser phase errors in seeded free electron lasers. Phys Rev Spec Top-Accel Beams 15(3):030702

    Article  ADS  Google Scholar 

  37. Allaria E, Appio R, Badano L et al (2012) Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat Photonics 6(10):699–704

    Article  ADS  Google Scholar 

  38. Feng C, Deng H, Wang G et al (2013) Slippage effect on energy modulation in seeded free-electron lasers with frequency chirped seed laser pulses. Phys Rev Spec Top-Accel Beams 16(6):060705

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Feng .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feng, C. (2016). Theoretical Studies on Novel High-Gain Seeded FEL Schemes. In: Theoretical and Experimental Studies on Novel High-Gain Seeded Free-Electron Laser Schemes. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49066-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49066-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49064-8

  • Online ISBN: 978-3-662-49066-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics