Skip to main content

The cell biology of homologous recombination

  • Chapter
Molecular Genetics of Recombination

Part of the book series: Topics in Current Genetics ((TCG,volume 17))

Abstract

Discontinuities in double-stranded DNA, such as DNA double-strand breaks (DSBs), pose a threat to genome stability. Homologous recombination is a process that not only effectively repairs DSBs, but also promotes preservation of genome integrity by repairing DNA discontinuities arising during DNA replication. Genetic analyses identified many genes involved in DSB repair and placed them in different pathways. Biochemical analyses have aided in placing the protein products in a mechanistic framework for the pathways, while molecular biological approaches, such as chromatin immuno-precipitation, have allowed the monitoring of protein composition near DSBs in populations of fixed cells. Progress in cell biological techniques has now made it possible to analyze proteins in their physiological environment of the living cell. Here, we describe how homologous recombination proteins have been characterized using the methods of cell biology. The current challenge is to integrate insights gained on the spatio-temporal behavior of DSB repair proteins using chromatin immuno-precipitation and live cell imaging in the established genetic and biochemical frameworks for mechanisms of DSB repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alani E, Thresher R, Griffith JD, Kolodner RD (1992) Characterization of DNA-binding and strand-exchange stimulation properties of y-RPA, a yeast single-strand-DNA-binding protein. J Mol Biol 227:54–71

    CAS  PubMed  Google Scholar 

  • Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11

    PubMed  Google Scholar 

  • Aten JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA, Essers J, Kanaar R (2004) Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303:92–95

    CAS  PubMed  Google Scholar 

  • Bezzubova O, Silbergleit A, Yamaguchi-Iwai Y, Takeda S, Buerstedde JM (1997) Reduced X-ray resistance and homologous recombination frequencies in a RAD54-/-mutant of the chicken DT40 cell line. Cell 89:185–193

    CAS  PubMed  Google Scholar 

  • Bishop DK, Ear U, Bhattacharyya A, Calderone C, Beckett M, Weichselbaum RR, Shinohara A (1998) Xrcc3 is required for assembly of Rad51 complexes in vivo. J Biol Chem 273:21482–21488

    CAS  PubMed  Google Scholar 

  • Bradshaw PS, Stavropoulos DJ, Meyn MS (2005) Human telomeric protein TRF2 associ-ates with genomic double-strand breaks as an early response to DNA damage. Nat Genet 37:193–197

    CAS  PubMed  Google Scholar 

  • Brenneman MA, Weiss AE, Nickoloff JA, Chen DJ (2000) XRCC3 is required for efficient repair of chromosome breaks by homologous recombination. Mutat Res 459:89–97

    CAS  PubMed  Google Scholar 

  • Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR 3rd, Hays L, Morgan WF, Petrini JH (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477–486

    CAS  PubMed  Google Scholar 

  • Carrero G, McDonald D, Crawford E, de Vries G, Hendzel MJ (2003) Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29:14–28

    CAS  PubMed  Google Scholar 

  • Chapados BR, Hosfield DJ, Han S, Qiu J, Yelent B, Shen B, Tainer JA (2004) Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replica-tion and repair. Cell 116:39–50

    CAS  PubMed  Google Scholar 

  • Chen JJ, Silver D, Cantor S, Livingston DM, Scully R (1999) BRCA1, BRCA2, and Rad51 operate in a common DNA damage response pathway. Cancer Res 59:1752s-1756s

    Google Scholar 

  • Chen PL, Chen CF, Chen Y, Xiao J, Sharp ZD, Lee WH (1998) The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci USA 95:5287–5292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clever B, Interthal H, Schmuckli-Maurer J, King J, Sigrist M, Heyer WD (1997) Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins. Embo J 16:2535–2544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Constantinou A, Chen XB, McGowan CH, West SC (2002) Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. Embo J 21:5577–5585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Constantinou A, Davies AA, West SC (2001) Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells. Cell 104:259–268

    CAS  PubMed  Google Scholar 

  • Costanzo V, Paull T, Gottesman M, Gautier J (2004) Mre11 assembles linear DNA fragments into DNA damage signaling complexes. PLoS Biol 2:E110

    PubMed Central  PubMed  Google Scholar 

  • Couedel C, Mills KD, Barchi M, Shen L, Olshen A, Johnson RD, Nussenzweig A, Essers J, Kanaar R, Li GC, Alt FW, Jasin M (2004) Collaboration of homologous recombina-tion and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 18:1293–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ (2000) The importance of repairing stalled replication forks. Nature 404:37–41

    CAS  PubMed  Google Scholar 

  • Cremer C, Cremer T, Fukuda M, Nakanishi K (1980) Detection of laser—UV microirradiation-induced DNA photolesions by immunofluorescent staining. Hum Genet 54:107–110

    CAS  PubMed  Google Scholar 

  • D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 3:317–327

    CAS  Google Scholar 

  • Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, West SC (2001) Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 7:273–282

    CAS  PubMed  Google Scholar 

  • de Jager M, Dronkert ML, Modesti M, Beerens CE, Kanaar R, van Gent DC (2001a) DNA-binding and strand-annealing activities of human Mre11: implications for its roles in DNA double-strand break repair pathways. Nucleic Acids Res 29:1317–1325

    PubMed Central  PubMed  Google Scholar 

  • de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R, Wyman C (2001b) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8:1129–1135

    PubMed  Google Scholar 

  • de Jager M, Wyman C, van Gent DC, Kanaar R (2002) DNA end-binding specificity of human Rad50/Mre11 is influenced by ATP. Nucleic Acids Res 30:4425–4431

    PubMed Central  PubMed  Google Scholar 

  • Deans B, Griffin CS, Maconochie M, Thacker J (2000) Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice. Embo J 19:6675–6685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dronkert ML, Beverloo HB, Johnson RD, Hoeijmakers JH, Jasin M, Kanaar R (2000) Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol Cell Biol 20:3147–3156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dudas A, Chovanec M (2004) DNA double-strand break repair by homologous recombina-tion. Mutat Res 566:131–167

    CAS  PubMed  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellison V, Stillman B (2003) Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5’ recessed DNA. PLoS Biol 1:E33

    PubMed Central  PubMed  Google Scholar 

  • Essers J, Hendriks RW, Swagemakers SM, Troelstra C, de Wit J, Bootsma D, Hoeijmakers JH, Kanaar R (1997) Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89:195–204

    CAS  PubMed  Google Scholar 

  • Essers J, Houtsmuller AB, Kanaar R (2006) Analysis of DNA recombination and repair proteins in living cells by photobleaching microscopy. Methods Enzymol 408:463–485

    CAS  PubMed  Google Scholar 

  • Essers J, Houtsmuller AB, van Veelen L, Paulusma C, Nigg AL, Pastink A, Vermeulen W, Hoeijmakers JH, Kanaar R (2002) Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. Embo J 21:2030–2037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W (2005) Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 25:9350–9359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Essers J, van Steeg H, de Wit J, Swagemakers SM, Vermeij M, Hoeijmakers JH, Kanaar R (2000) Homologous and non-homologous recombination differentially affect DNA damage repair in mice. Embo J 19:1703–1710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair (Amst) 3:959–967

    CAS  Google Scholar 

  • Friedberg EC, McDaniel LD, Schultz RA (2004) The role of endogenous and exogenous DNA damage and mutagenesis. Curr Opin Genet Dev 14:5–10

    CAS  PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA Repair And Mutagenesis. ASM Press, Washington, D.C.

    Google Scholar 

  • Fujimori A, Tachiiri S, Sonoda E, Thompson LH, Dhar PK, Hiraoka M, Takeda S, Zhang Y, Reth M, Takata M (2001) Rad52 partially substitutes for the Rad51 paralog XRCC3 in maintaining chromosomal integrity in vertebrate cells. Embo J 20:5513–5520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Game JC, Mortimer RK (1974) A genetic study of x-ray sensitive mutants in yeast. Mutat Res 24:281–292

    CAS  PubMed  Google Scholar 

  • Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    CAS  PubMed  Google Scholar 

  • Godthelp BC, Wiegant WW, van Duijn-Goedhart A, Scharer OD, van Buul PP, Kanaar R, Zdzienicka MZ (2002) Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability. Nucleic Acids Res 30:2172–2182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldberg M, Stucki M, Falck J, D’Amours D, Rahman D, Pappin D, Bartek J, Jackson SP (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421:952–956

    CAS  PubMed  Google Scholar 

  • Golub EI, Gupta RC, Haaf T, Wold MS, Radding CM (1998) Interaction of human rad51 recombination protein with single-stranded DNA binding protein, RPA. Nucleic Acids Res 26:5388–5393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Golub EI, Kovalenko OV, Gupta RC, Ward DC, Radding CM (1997) Interaction of human recombination proteins Rad51 and Rad54. Nucleic Acids Res 25:4106–4110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH (1996) Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat Genet 12:191–194

    CAS  PubMed  Google Scholar 

  • Haaf T, Golub EI, Reddy G, Radding CM, Ward DC (1995) Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc Natl Acad Sci USA 92:2298–2302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haber JE (1995) In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays 17:609–620

    CAS  PubMed  Google Scholar 

  • Haber JE (2000) Lucky breaks: analysis of recombination in Saccharomyces. Mutat Res 451:53–69

    CAS  PubMed  Google Scholar 

  • Hakem R, de la Pompa JL, Sirard C, Mo R, Woo M, Hakem A, Wakeham A, Potter J, Reitmair A, Billia F, Firpo E, Hui CC, Roberts J, Rossant J, Mak TW (1996) The tu-mor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85:1009–1023

    CAS  PubMed  Google Scholar 

  • Haraguchi T (2002) Live cell imaging: approaches for studying protein dynamics in living cells. Cell Struct Funct 27:333–334

    CAS  PubMed  Google Scholar 

  • Hauptner A, Dietzel S, Drexler GA, Reichart P, Krucken R, Cremer T, Friedl AA, Dollinger G (2004) Microirradiation of cells with energetic heavy ions. Radiat Environ Bio-phys 42:237–245

    CAS  Google Scholar 

  • Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, Karcher A, Henderson B, Bodmer JL, McMurray CT, Carney JP, Petrini JH, Tainer JA (2002) The Rad50 zinchook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–566

    CAS  PubMed  Google Scholar 

  • Houtsmuller AB (2005) Fluorescence recovery after photobleaching: application to nuclear proteins. Adv Biochem Eng Biotechnol 95:177–199

    CAS  PubMed  Google Scholar 

  • Houtsmuller AB, Vermeulen W (2001) Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching. Histochem Cell Biol 115:13–21

    CAS  PubMed  Google Scholar 

  • Hyde H, Davies AA, Benson FE, West SC (1994) Resolution of recombination intermediates by a mammalian activity functionally analogous to Escherichia coli RuvC resol-vase. J Biol Chem 269:5202–5209

    CAS  PubMed  Google Scholar 

  • Jakob B, Scholz M, Taucher-Scholz G (2003) Biological imaging of heavy charged-particle tracks. Radiat Res 159:676–684

    CAS  PubMed  Google Scholar 

  • Jasin M (1996) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12:224–228

    CAS  PubMed  Google Scholar 

  • Johnson RD, Liu N, Jasin M (1999) Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401:397–399

    CAS  PubMed  Google Scholar 

  • Kanaar R, Hoeijmakers JH, van Gent DC (1998) Molecular mechanisms of DNA double strand break repair. Trends Cell Biol 8:483–489

    CAS  PubMed  Google Scholar 

  • Kannouche P, Broughton BC, Volker M, Hanaoka F, Mullenders LH, Lehmann AR (2001) Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes Dev 15:158–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawamoto T, Araki K, Sonoda E, Yamashita YM, Harada K, Kikuchi K, Masutani C, Hanaoka F, Nozaki K, Hashimoto N, Takeda S (2005) Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol Cell 20:793–799

    CAS  PubMed  Google Scholar 

  • Kim JS, Krasieva TB, Kurumizaka H, Chen DJ, Taylor AM, Yokomori K (2005) Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells. J Cell Biol 170:341–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JS, Krasieva TB, LaMorte V, Taylor AM, Yokomori K (2002) Specific recruitment of human cohesin to laser-induced DNA damage. J Biol Chem 277:45149–45153

    CAS  PubMed  Google Scholar 

  • Kojic M, Kostrub CF, Buchman AR, Holloman WK (2002) BRCA2 homolog required for proficiency in DNA repair, recombination, and genome stability in Ustilago maydis. Mol Cell 10:683–691

    CAS  PubMed  Google Scholar 

  • Kojic M, Yang H, Kostrub CF, Pavletich NP, Holloman WK (2003) The BRCA2-interacting protein DSS1 is vital for DNA repair, recombination, and genome stability in Ustilago maydis. Mol Cell 12:1043–1049

    CAS  PubMed  Google Scholar 

  • Kojic M, Zhou Q, Lisby M, Holloman WK (2005) Brh2-Dss1 interplay enables properly controlled recombination in Ustilago maydis. Mol Cell Biol 25:2547–2557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271

    CAS  PubMed  Google Scholar 

  • Kurumizaka H, Ikawa S, Nakada M, Enomoto R, Kagawa W, Kinebuchi T, Yamazoe M, Yokoyama S, Shibata T (2002) Homologous pairing and ring and filament structure formation activities of the human Xrcc2*Rad51D complex. J Biol Chem 277:14315–14320

    CAS  PubMed  Google Scholar 

  • Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE (1998) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399–409

    CAS  PubMed  Google Scholar 

  • Lim DS, Hasty P (1996) A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 16:7133–7143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lio YC, Mazin AV, Kowalczykowski SC, Chen DJ (2003) Complex formation by the human Rad51B and Rad51C DNA repair proteins and their activities in vitro. J Biol Chem 278:2469–2478

    CAS  PubMed  Google Scholar 

  • Lio YC, Schild D, Brenneman MA, Redpath JL, Chen DJ (2004) Human Rad51C deficiency destabilizes XRCC3, impairs recombination, and radiosensitizes S/G2-phase cells. J Biol Chem 279:42313–42320

    CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300:87–91

    CAS  PubMed  Google Scholar 

  • Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699–713

    CAS  PubMed  Google Scholar 

  • Lisby M, Rothstein R, Mortensen UH (2001) Rad52 forms DNA repair and recombination centers during S phase. Proc Natl Acad Sci USA 98:8276–8282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu CY, Flesken-Nikitin A, Li S, Zeng Y, Lee WH (1996) Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev 10:1835–1843

    CAS  PubMed  Google Scholar 

  • Liu N, Schild D, Thelen MP, Thompson LH (2002) Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells. Nucleic Acids Res 30:1009–1015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Masson JY, Shah R, O’Regan P, West SC (2004) RAD51C is required for Holliday junction processing in mammalian cells. Science 303:243–246

    CAS  PubMed  Google Scholar 

  • Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A (1997) Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev 11:1226–1241

    CAS  PubMed  Google Scholar 

  • Lukas C, Bartek J, Lukas J (2005) Imaging of protein movement induced by chromosomal breakage: tiny ‘local’ lesions pose great ‘global’ challenges. Chromosoma 114:146–154

    CAS  PubMed  Google Scholar 

  • Lukas C, Falck J, Bartkova J, Bartek J, Lukas J (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5:255–260

    CAS  PubMed  Google Scholar 

  • Lukas C, Melander F, Stucki M, Falck J, Bekker-Jensen S, Goldberg M, Lerenthal Y, Jackson SP, Bartek J, Lukas J (2004) Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. Embo J 23:2674–2683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo G, Yao MS, Bender CF, Mills M, Bladl AR, Bradley A, Petrini JH (1999) Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci USA 96:7376–7381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marmorstein LY, Ouchi T, Aaronson SA (1998) The BRCA2 gene product functionally interacts with p53 and RAD51. Proc Natl Acad Sci USA 95:13869–13874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maser RS, Monsen KJ, Nelms BE, Petrini JH (1997) hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol Cell Biol 17:6087–6096

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masson JY, Stasiak AZ, Stasiak A, Benson FE, West SC (2001a) Complex formation by the human RAD51C and XRCC3 recombination repair proteins. Proc Natl Acad Sci USA 98:8440–8446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masson JY, Tarsounas MC, Stasiak AZ, Stasiak A, Shah R, McIlwraith MJ, Benson FE, West SC (2001b) Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev 15:3296–3307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazin AV, Alexeev AA, Kowalczykowski SC (2003) A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J Biol Chem 278:14029–14036

    CAS  Google Scholar 

  • Mazin AV, Bornarth CJ, Solinger JA, Heyer WD, Kowalczykowski SC (2000) Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament. Mol Cell 6:583–592

    CAS  PubMed  Google Scholar 

  • McLlwraith MJ, Vaisman A, Liu Y, Fanning E, Woodgate R, West SC (2005) Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 20:783–792

    PubMed  Google Scholar 

  • Meldrum RA, Botchway SW, Wharton CW, Hirst GJ (2003) Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption. EMBO Rep 4:1144–1149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michel B, Grompone G, Flores MJ, Bidnenko V (2004) Multiple pathways process stalled replication forks. Proc Natl Acad Sci USA 101:12783–12788

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller KA, Yoshikawa DM, McConnell IR, Clark R, Schild D, Albala JS (2002) RAD51C interacts with RAD51B and is central to a larger protein complex in vivo exclusive of RAD51. J Biol Chem 277:8406–8411

    CAS  PubMed  Google Scholar 

  • Mills KD, Ferguson DO, Essers J, Eckersdorff M, Kanaar R, Alt FW (2004) Rad54 and DNA Ligase IV cooperate to maintain mammalian chromatid stability. Genes Dev 18:1283–1292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mirzoeva OK, Petrini JH (2003) DNA replication-dependent nuclear dynamics of the Mre11 complex. Mol Cancer Res 1:207–218

    CAS  PubMed  Google Scholar 

  • Moreno-Herrero F, de Jager M, Dekker NH, Kanaar R, Wyman C, Dekker C (2005) Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature 437:440–443

    CAS  PubMed  Google Scholar 

  • Moynahan ME, Pierce AJ, Jasin M (2001) BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7:263–272

    CAS  PubMed  Google Scholar 

  • Nakata T, Terada S, Hirokawa N (1998) Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J Cell Biol 140:659–674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelms BE, Maser RS, MacKay JF, Lagally MG, Petrini JH (1998) In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280:590–592

    CAS  PubMed  Google Scholar 

  • New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC (1998) Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391:407–410

    CAS  PubMed  Google Scholar 

  • Paull TT, Gellert M (1998) The 3’ to 5’ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1:969–979

    CAS  PubMed  Google Scholar 

  • Paull TT, Gellert M (1999) Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13:1276–1288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    CAS  PubMed  Google Scholar 

  • Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL, Venkitaraman AR (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Na-ture 420:287–293

    CAS  Google Scholar 

  • Petukhova G, Stratton S, Sung P (1998) Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393:91–94

    CAS  PubMed  Google Scholar 

  • Petukhova G, Van Komen S, Vergano S, Klein H, Sung P (1999) Yeast Rad54 promotes Rad51-dependent homologous DNA pairing via ATP hydrolysis-driven change in DNA double helix conformation. J Biol Chem 274:29453–29462

    CAS  PubMed  Google Scholar 

  • Pierce AJ, Johnson RD, Thompson LH, Jasin M (1999) XRCC3 promotes homologydirected repair of DNA damage in mammalian cells. Genes Dev 13:2633–2638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pittman DL, Schimenti JC (2000) Midgestation lethality in mice deficient for the RecA-related gene, Rad51d/Rad51l3. Genesis 26:167–173

    CAS  PubMed  Google Scholar 

  • Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    CAS  PubMed  Google Scholar 

  • Prakash S, Johnson RE, Prakash L (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317–353

    CAS  PubMed  Google Scholar 

  • Raderschall E, Golub EI, Haaf T (1999) Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc Natl Acad Sci USA 96:1921–1926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raschle M, Van Komen S, Chi P, Ellenberger T, Sung P (2004) Multiple interactions with the Rad51 recombinase govern the homologous recombination function of Rad54. J Biol Chem 279:51973–51980

    CAS  PubMed  Google Scholar 

  • Rattray AJ, Strathern JN (2005) Homologous recombination is promoted by translesion polymerase poleta. Mol Cell 20:658–659

    PubMed  Google Scholar 

  • Richardson C, Elliott B, Jasin M (1999) Chromosomal double-strand breaks introduced in mammalian cells by expression of I-Sce I endonuclease. Methods Mol Biol 113:453–463

    CAS  PubMed  Google Scholar 

  • Rijkers T, Van Den Ouweland J, Morolli B, Rolink AG, Baarends WM, Van Sloun PP, Lohman PH, Pastink A (1998) Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol Cell Biol 18:6423–6429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ristic D, Wyman C, Paulusma C, Kanaar R (2001) The architecture of the human Rad54DNA complex provides evidence for protein translocation along DNA. Proc Natl Acad Sci USA 98:8454–8460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains in-volved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rouet P, Smih F, Jasin M (1994a) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA 91:6064–6068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rouet P, Smih F, Jasin M (1994b) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106

    CAS  PubMed Central  PubMed  Google Scholar 

  • San Filippo J, Chi P, Sehorn MG, Etchin J, Krejci L, Sung P (2006) Recombination mediator and RAD51 targeting activities of a human BRCA2 polypeptide. J Biol Chem 28:11649–657

    Google Scholar 

  • Schild D, Lio YC, Collins DW, Tsomondo T, Chen DJ (2000) Evidence for simultaneous protein interactions between human Rad51 paralogs. J Biol Chem 275:16443–16449

    CAS  PubMed  Google Scholar 

  • Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–275

    CAS  PubMed  Google Scholar 

  • Scully R, Puget N, Vlasakova K (2000) DNA polymerase stalling, sister chromatid recom bination and the BRCA genes. Oncogene 19:6176–6183

    CAS  PubMed  Google Scholar 

  • Sedelnikova OA, Pilch DR, Redon C, Bonner WM (2003) Histone H2AX in DNA damage and repair. Cancer Biol Ther 2:233–235

    CAS  PubMed  Google Scholar 

  • Sharan SK, Morimatsu M, Albrecht U, Lim DS, Regel E, Dinh C, Sands A, Eichele G, Hasty P, Bradley A (1997) Embryonic lethality and radiation hypersensitivity medi-ated by Rad51 in mice lacking Brca2. Nature 386:804–810

    CAS  PubMed  Google Scholar 

  • Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    CAS  PubMed  Google Scholar 

  • Shinohara A, Shinohara M, Ohta T, Matsuda S, Ogawa T (1998) Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3:145–156

    CAS  PubMed  Google Scholar 

  • Shivji MK, Venkitaraman AR (2004) DNA recombination, chromosomal stability and carcinogenesis: insights into the role of BRCA2. DNA Repair (Amst) 3:835–843

    CAS  Google Scholar 

  • Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, Haber JE, Lichten M (2004) Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol 14:1703–1711

    CAS  PubMed  Google Scholar 

  • Shu Z, Smith S, Wang L, Rice MC, Kmiec EB (1999) Disruption of muREC2/RAD51L1 in mice results in early embryonic lethality which can Be partially rescued in a p53(-/-) background. Mol Cell Biol 19:8686–8693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sigurdsson S, Van Komen S, Bussen W, Schild D, Albala JS, Sung P (2001) Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev 15:3308–3318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smiraldo PG, Gruver AM, Osborn JC, Pittman DL (2005) Extensive chromosomal instabil-ity in Rad51d-deficient mouse cells. Cancer Res 65:2089–2096

    CAS  PubMed  Google Scholar 

  • Solinger JA, Heyer WD (2001) Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange. Proc Natl Acad Sci USA 98:8447–8453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solinger JA, Kiianitsa K, Heyer WD (2002) Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10:1175–1188

    CAS  PubMed  Google Scholar 

  • Solomon DA, Cardoso MC, Knudsen ES (2004) Dynamic targeting of the replication machinery to sites of DNA damage. J Cell Biol 166:455–463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solovjeva L, Svetlova M, Sasina L, Tanaka K, Saijo M, Nazarov I, Bradbury M, Tomilin N (2005) High mobility of flap endonuclease 1 and DNA polymerase eta associated with replication foci in mammalian S-phase nucleus. Mol Biol Cell 16:2518–2528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song B, Sung P (2000) Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J Biol Chem 275:15895–15904

    CAS  PubMed  Google Scholar 

  • Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H, Takata M, Yamaguchi-Iwai Y, Takeda S (1998) Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. Embo J 17:598–608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sporbert A, Gahl A, Ankerhold R, Leonhardt H, Cardoso MC (2002) DNA polymerase clamp shows little turnover at established replication sites but sequential de novo as-sembly at adjacent origin clusters. Mol Cell 10:1355–1365

    CAS  PubMed  Google Scholar 

  • Sprague BL, McNally JG (2005) FRAP analysis of binding: proper and fitting. Trends Cell Biol 15:84–91

    CAS  PubMed  Google Scholar 

  • Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG, Raams A, Byrd PJ, Petrini JH, Taylor AM (1999) The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99:577–587

    CAS  PubMed  Google Scholar 

  • Sugawara N, Wang X, Haber JE (2003) In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12:209–219

    CAS  PubMed  Google Scholar 

  • Sugiyama T, Kowalczykowski SC (2002) Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J Biol Chem 277:31663–31672

    CAS  PubMed  Google Scholar 

  • Sugiyama T, New JH, Kowalczykowski SC (1998) DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and singlestranded DNA. Proc Natl Acad Sci USA 95:6049–6054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugiyama T, Zaitseva EM, Kowalczykowski SC (1997) A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J Biol Chem 272:7940–7945

    CAS  PubMed  Google Scholar 

  • Sung P (1997) Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem 272:28194–28197

    CAS  PubMed  Google Scholar 

  • Suzuki A, de la Pompa JL, Hakem R, Elia A, Yoshida R, Mo R, Nishina H, Chuang T, Wakeham A, Itie A, Koo W, Billia P, Ho A, Fukumoto M, Hui CC, Mak TW (1997) Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev 11:1242–1252

    CAS  PubMed  Google Scholar 

  • Swagemakers SM, Essers J, de Wit J, Hoeijmakers JH, Kanaar R (1998) The human RAD54 recombinational DNA repair protein is a double-stranded DNA-dependent ATPase. J Biol Chem 273:28292–28297

    CAS  PubMed  Google Scholar 

  • Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630–670, table of contents

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takata M, Sasaki MS, Sonoda E, Fukushima T, Morrison C, Albala JS, Swagemakers SM, Kanaar R, Thompson LH, Takeda S (2000) The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol 20:6476–6482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, Thompson LH, Takeda S (2001) Chromosome instability and defective recombinational repair in knock-out mutants of the five Rad51 paralogs. Mol Cell Biol 21:2858–2866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tan TL, Essers J, Citterio E, Swagemakers SM, de Wit J, Benson FE, Hoeijmakers JH, Kanaar R (1999) Mouse Rad54 affects DNA conformation and DNA-damage-induced Rad51 foci formation. Curr Biol 9:325–328

    CAS  PubMed  Google Scholar 

  • Tashiro S, Kotomura N, Shinohara A, Tanaka K, Ueda K, Kamada N (1996) S phase specific formation of the human Rad51 protein nuclear foci in lymphocytes. Oncogene 12:2165–2170

    CAS  PubMed  Google Scholar 

  • Tashiro S, Walter J, Shinohara A, Kamada N, Cremer T (2000) Rad51 accumulation at sites of DNA damage and in postreplicative chromatin. J Cell Biol 150:283–291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor AM, Groom A, Byrd PJ (2004) Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst) 3:1219–1225

    CAS  Google Scholar 

  • Thacker J (2005) The RAD51 gene family, genetic instability and cancer. Cancer Lett 219:125–135

    CAS  PubMed  Google Scholar 

  • Thompson LH, Schild D (2001) Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res 477:131–153

    CAS  PubMed  Google Scholar 

  • Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M, Matsushiro A, Yoshimura Y, MoritaT (1996) Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci USA 93:6236–6240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tutt A, Gabriel A, Bertwistle D, Connor F, Paterson H, Peacock J, Ross G, Ashworth A (1999) Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol 9:1107–1110

    CAS  PubMed  Google Scholar 

  • Van Komen S, Petukhova G, Sigurdsson S, Stratton S, Sung P (2000) Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54. Mol Cell 6:563–572

    PubMed  Google Scholar 

  • Van Komen S, Petukhova G, Sigurdsson S, Sung P (2002) Functional cross-talk among Rad51, Rad54, and replication protein A in heteroduplex DNA joint formation. J Biol Chem 277:43578–43587

    PubMed  Google Scholar 

  • van Veelen LR, Cervelli T, van de Rakt MW, Theil AF, Essers J, Kanaar R (2005a) Analysis of ionizing radiation-induced foci of DNA damage repair proteins. Mutat Res 574:22–33

    PubMed  Google Scholar 

  • van Veelen LR, Essers J, van de Rakt MW, Odijk H, Pastink A, Zdzienicka MZ, Paulusma CC, Kanaar R (2005b) Ionizing radiation-induced foci formation of mammalian Rad51 and Rad54 depends on the Rad51 paralogs, but not on Rad52. Mutat Res 574:34–49

    PubMed  Google Scholar 

  • Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, Beckmann G, Seemanova E, Cooper PR, Nowak NJ, Stumm M, Weemaes CM, Gatti RA, Wilson RK, Digweed M, Rosenthal A, Sperling K, Concannon P, Reis A (1998) Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syn-drome. Cell 93:467–476

    CAS  PubMed  Google Scholar 

  • Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182

    CAS  PubMed  Google Scholar 

  • Waldman AS, Liskay RM (1988) Resolution of synthetic Holliday structures by an extract of human cells. Nucleic Acids Res 16:10249–10266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walter J, Cremer T, Miyagawa K, Tashiro S (2003) A new system for laser-UVA-microirradiation of living cells. J Microsc 209:71–75

    CAS  PubMed  Google Scholar 

  • Wesoly J, Agarwal S, Sigurdsson S, Bussen W, Van Komen S, Qin J, van Steeg H, van Benthem J, Wassenaar E, Baarends WM, Ghazvini M, Tafel AA, Heath H, Galjart N, Essers J, Grootegoed JA, Arnheim N, Bezzubova O, Buerstedde JM, Sung P, Kanaar R (2006) Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol Cell Biol 26:976–989

    CAS  PubMed Central  PubMed  Google Scholar 

  • West SC (1997) Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet 31:213–244

    CAS  PubMed  Google Scholar 

  • White J, Stelzer E (1999) Photobleaching GFP reveals protein dynamics inside live cells. Trends Cell Biol 9:61–65

    CAS  PubMed  Google Scholar 

  • Wiese C, Collins DW, Albala JS, Thompson LH, Kronenberg A, Schild D (2002) Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells. Nucleic Ac-ids Res 30:1001–1008

    CAS  Google Scholar 

  • Wiltzius JJ, Hohl M, Fleming JC, Petrini JH (2005) The Rad50 hook domain is a critical determinant of Mre11 complex functions. Nat Struct Mol Biol 12:403–407

    CAS  PubMed  Google Scholar 

  • Wong AK, Pero R, Ormonde PA, Tavtigian SV, Bartel PL (1997) RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem 272:31941–31944

    CAS  PubMed  Google Scholar 

  • Xiao Y, Weaver DT (1997) Conditional gene targeted deletion by Cre recombinase demon-strates the requirement for the double-strand break repair Mre11 protein in murine em-bryonic stem cells. Nucleic Acids Res 25:2985–2991

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada NA, Hinz JM, Kopf VL, Segalle KD, Thompson LH (2004) XRCC3 ATPase ac-tivity is required for normal XRCC3-Rad51C complex dynamics and homologous re-combination. J Biol Chem 279:23250–23254

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Iwai Y, Sonoda E, Buerstedde JM, Bezzubova O, Morrison C, Takata M, Shinohara A, Takeda S (1998) Homologous recombination, but not DNA repair, is re-duced in vertebrate cells deficient in RAD52. Mol Cell Biol 18:6430–6435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Iwai Y, Sonoda E, Sasaki MS, Morrison C, Haraguchi T, Hiraoka Y, Yamashita YM, Yagi T, Takata M, Price C, Kakazu N, Takeda S (1999) Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. Embo J 18:6619–6629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Li Q, Fan J, Holloman WK, Pavletich NP (2005) The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature 433:653–657

    CAS  PubMed  Google Scholar 

  • Yokoyama H, Kurumizaka H, Ikawa S, Yokoyama S, Shibata T (2003) Holliday junction binding activity of the human Rad51B protein. J Biol Chem 278:2767–2772

    CAS  PubMed  Google Scholar 

  • Yokoyama H, Sarai N, Kagawa W, Enomoto R, Shibata T, Kurumizaka H, Yokoyama S (2004) Preferential binding to branched DNA strands and strand-annealing activity of the human Rad51B, Rad51C, Rad51D and Xrcc2 protein complex. Nucleic Acids Res 32:2556–2565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yonetani Y, Hochegger H, Sonoda E, Shinya S, Yoshikawa H, Takeda S, Yamazoe M (2005) Differential and collaborative actions of Rad51 paralog proteins in cellular re-sponse to DNA damage. Nucleic Acids Res 33:4544–4552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu DS, Sonoda E, Takeda S, Huang CL, Pellegrini L, Blundell TL, Venkitaraman AR (2003) Dynamic control of Rad51 recombinase by self-association and interaction with BRCA2. Mol Cell 12:1029–1041

    CAS  PubMed  Google Scholar 

  • Yu VP, Koehler M, Steinlein C, Schmid M, Hanakahi LA, van Gool AJ, West SC, Venkitaraman AR (2000) Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev 14:1400–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan SS, Lee SY, Chen G, Song M, Tomlinson GE, Lee EY (1999) BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res 59:3547–3551

    CAS  PubMed  Google Scholar 

  • Zhu J, Petersen S, Tessarollo L, Nussenzweig A (2001) Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 11:105–109

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agarwal, S., Kanaar, R., Essers, J. (2007). The cell biology of homologous recombination. In: Aguilera, A., Rothstein, R. (eds) Molecular Genetics of Recombination. Topics in Current Genetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71021-9_12

Download citation

Publish with us

Policies and ethics