Skip to main content

Impact of Enteric Health and Mucosal Permeability on Skeletal Health and Lameness in Poultry

  • Chapter
  • First Online:
Understanding the Gut-Bone Signaling Axis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1033))

Abstract

Intestinal barrier leakage and/or altered gut microbial composition has been shown to markedly impact both osteoblast and osteoclast activities, systemically through circulation of gut immune cells and cytokines and locally by causing inflammation of extraintestinal organs such as the liver and bone marrow. Mild cases of heightened intestinal inflammation can cause bone loss in male mice in the absence of any overt nutritional deficiencies or weight loss, which has also been shown in chickens that have been infected with Salmonella. For poultry, ingredients selected for feed formulation have also a significant impact on gut health, intestinal microbiota, bone quality, and performance parameters. Consumption of diets with a high content of soluble non-starch polysaccharides (NSP) can affect bone quality parameters by reducing the amount of conjugated bile acids in the intestine, therefore diminishing the absorption of fat-soluble vitamins such as vitamin D and minerals like calcium and phosphorus. Recent enteric inflammation studies have shown that high NSP-containing diets have effects on intestinal viscosity, bone mineral content, and breaking strength, along with increased fluorescein isothiocyanate-dextran (FITC-d) leakage. Other skeletal diseases, such as bacterial chondronecrosis with osteomyelitis and enterococcal spondylitis, have a microbial component that is associated with increased mucosal permeability of the gut. Probiotics targeted toward control of enteric inflammation, either created through infectious disease or poor diet, may serve as a strategy for control of predisposing factors that lead to bone disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sylvester FA, Wyzga N, Hyams JS, Davis PM, Lerer T, Vance K, et al. Natural history of bone metabolism and bone mineral density in children with inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(1):42–50.

    Article  PubMed  Google Scholar 

  2. Harris L, Senagore P, Young VB, McCabe LR. Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol Gastrointest Liver Physiol. 2009;296(5):G1020–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agrawal M, Arora S, Li J, Rahmani R, Sun L, Steinlauf AF, et al. Bone, inflammation, and inflammatory bowel disease. Curr Osteoporos Rep. 2011;9(4):251–7.

    Article  PubMed  Google Scholar 

  4. McCabe LR, Irwin R, Schaefer L, Britton RA. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol. 2013;228(8):1793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Irwin R, Lee T, Young VB, Parameswaran N, McCabe LR. Colitis-induced bone loss is gender dependent and associated with increased inflammation. Inflamm Bowel Dis. 2013;19(8):1586–97.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kaiser P, Rothwell L, Galyov EE, Barrow PA, Burnside J, Wigley P. Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. Microbiol Read Engl. 2000;146(Pt 12):3217–26.

    Article  CAS  Google Scholar 

  7. Haghighi HR, Abdul-Careem MF, Dara RA, Chambers JR, Sharif S. Cytokine gene expression in chicken cecal tonsils following treatment with probiotics and Salmonella infection. Vet Microbiol. 2008;126(1–3):225–33.

    Article  CAS  PubMed  Google Scholar 

  8. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136(1):65–80.

    Article  PubMed  Google Scholar 

  9. Higgins SE, Wolfenden AD, Tellez G, Hargis BM, Porter TE. Transcriptional profiling of cecal gene expression in probiotic- and Salmonella-challenged neonatal chicks. Poult Sci. 2011;90(4):901–13.

    Article  CAS  PubMed  Google Scholar 

  10. Carey CM, Kostrzynska M. Lactic acid bacteria and bifidobacteria attenuate the proinflammatory response in intestinal epithelial cells induced by Salmonella enterica serovar Typhimurium. Can J Microbiol. 2013;59(1):9–17.

    Google Scholar 

  11. Choct M, Annison G. Anti-nutritive effect of wheat pentosans in broiler chickens: roles of viscosity and gut microflora. Br Poult Sci. 1992;33(4):821–34.

    Article  CAS  PubMed  Google Scholar 

  12. Erdaw MM, Bhuiyan MM, Iji PA. Enhancing the nutritional value of soybeans for poultry through supplementation with new-generation feed enzymes. Worlds Poult Sci J. 2016;72(2):307–22.

    Article  Google Scholar 

  13. Knudsen KEB. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult Sci. 2014;93(9):2380–93.

    Article  CAS  PubMed  Google Scholar 

  14. Choct M, Hughes RJ, Bedford MR. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. Br Poult Sci. 1999;40(3):419–22.

    Article  CAS  PubMed  Google Scholar 

  15. Annett CB, Viste JR, Chirino-Trejo M, Classen HL, Middleton DM, Simko E. Necrotic enteritis: effect of barley, wheat and corn diets on proliferation of Clostridium perfringens type A. Avian Pathol. 2002;31(6):598–601.

    Article  CAS  PubMed  Google Scholar 

  16. Langhout DJ, Schutte JB, Geerse C, Kies AK, Jong JD, Verstegen MWA. Effects on chick performance and nutrient digestibility of an endo-xylanase added to a wheat- and rye-based diet in relation to fat source. Br Poult Sci. 1997;38(5):557–63.

    Article  CAS  PubMed  Google Scholar 

  17. Kuttappan VA, Vicuña EA, Latorre JD, Wolfenden AD, Téllez GI, Hargis BM, et al. Evaluation of gastrointestinal leakage in multiple enteric inflammation models in chickens. Front Vet Sci [Internet]. 2015;2:66. [cited 2016 Mar 8] Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4677096/

  18. Tellez G, Latorre JD, Kuttappan VA, Kogut MH, Wolfenden A, Hernandez-Velasco X, et al. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens. Front Genet. 2014;25:5.

    Google Scholar 

  19. Bar-Shira E, Friedman A. Development and adaptations of innate immunity in the gastrointestinal tract of the newly hatched chick. Dev Comp Immunol. 2006;30(10):930–41.

    Article  CAS  PubMed  Google Scholar 

  20. Bar-Shira E, Sklan D, Friedman A. Establishment of immune competence in the avian GALT during the immediate post-hatch period. Dev Comp Immunol. 2003;27(2):147–57.

    Article  CAS  PubMed  Google Scholar 

  21. Van Immerseel F, De Buck J, De Smet I, Mast J, Haesebrouck F, Ducatelle R. Dynamics of immune cell infiltration in the caecal lamina propria of chickens after neonatal infection with a Salmonella Enteritidis strain. Dev Comp Immunol. 2002;26(4):355–64.

    Article  PubMed  Google Scholar 

  22. Lowenthal JW, York JJ, O’neil TE, Rhodes S, Prowse SJ, Strom ADG, et al. In vivo effects of chicken interferon-γ during infection with Eimeria. J Interf Cytokine Res. 1997;17(9):551–8.

    Article  CAS  Google Scholar 

  23. Craven M, Egan CE, Dowd SE, McDonough SP, Dogan B, Denkers EY, et al. Inflammation drives dysbiosis and bacterial invasion in murine models of Ileal Crohn’s disease. PLoS One. 2012;7(7):e41594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lebeer S, Vanderleyden J, Keersmaecker SCJD. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 2008;72(4):728–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lebeer S, Vanderleyden J, De Keersmaecker SCJ. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol. 2010;8(3):171–84.

    Article  CAS  PubMed  Google Scholar 

  26. McCracken VJ, Gaskins HR. Probiotics and the immune system. In: Probiotics: a critical review. Food and Agriculture Organization of the United Nations. 1999. p. 85–111.

    Google Scholar 

  27. Sánchez B, Bressollier P, Urdaci MC. Exported proteins in probiotic bacteria: adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. FEMS Immunol Med Microbiol. 2008;54(1):1–17.

    Article  PubMed  Google Scholar 

  28. Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol. 2010;7(9):503–14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449(7164):819–26.

    Article  CAS  PubMed  Google Scholar 

  30. García CEV, Petrova M, Claes IJJ, Boeck ID, Verhoeven TLA, Dilissen E, et al. Piliation of Lactobacillus rhamnosus GG promotes adhesion, phagocytosis and cytokine modulation in macrophages. Appl Environ Microbiol. 2015;81:2050. AEM.03949–14

    Article  Google Scholar 

  31. Liu Z-H, Huang M-J, Zhang X-W, Wang L, Huang N-Q, Peng H, et al. The effects of perioperative probiotic treatment on serum zonulin concentration and subsequent postoperative infectious complications after colorectal cancer surgery: a double-center and double-blind randomized clinical trial. Am J Clin Nutr. 2013;97(1):117–26.

    Article  CAS  PubMed  Google Scholar 

  32. Tellez G, Dean CE, Corrier DE, Deloach JR, Jaeger L, Hargis BM. Effect of dietary lactose on cecal morphology, pH, organic acids, and Salmonella enteritidis organ invasion in Leghorn chicks. Poult Sci. 1993;72(4):636–42.

    Article  CAS  PubMed  Google Scholar 

  33. Torres-Rodriguez A, Donoghue AM, Donoghue DJ, Barton JT, Tellez G, Hargis BM. Performance and condemnation rate analysis of commercial turkey flocks treated with a Lactobacillus spp.-based probiotic. Poult Sci. 2007;86(3):444–6.

    Article  CAS  PubMed  Google Scholar 

  34. Torres-Rodriguez A, Higgins SE, Vicente JLS, Wolfenden AD, Gaona-Ramirez G, Barton JT, et al. Effect of lactose as a prebiotic on Turkey body weight under commercial conditions. J Appl Poult Res. 2007;16(4):635–41.

    Article  Google Scholar 

  35. Vicente J, Wolfenden A, Torres-Rodriguez A, Higgins S, Tellez G, Hargis B. Effect of a lactobacillus species-based probiotic and dietary lactose prebiotic on Turkey poult performance with or without Salmonella Enteritidis challenge. J Appl Poult Res. 2007;16(3):361–4.

    Article  Google Scholar 

  36. Fraune S, Bosch TCG. Why bacteria matter in animal development and evolution. BioEssays News Rev Mol Cell Dev Biol. 2010;32(7):571–80.

    Article  CAS  Google Scholar 

  37. Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2011;12(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  38. Salzman NH. Microbiota-immune system interaction: an uneasy alliance. Curr Opin Microbiol. 2011;14(1):99–105.

    Article  PubMed  Google Scholar 

  39. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wideman RF. Bacterial chondronecrosis with osteomyelitis and lameness in broilers: a review. Poult Sci. 2016;95:325–44.

    Article  PubMed  Google Scholar 

  41. Wideman RF, Prisby RD. Bone circulatory disturbances in the development of spontaneous bacterial chondronecrosis with osteomyelitis: a translational model for the pathogenesis of femoral head necrosis. Front Endocrinol. 2013;3:183. doi:10.3389/fendo.2012.00183.

    Google Scholar 

  42. Borst LB, Suyemoto MM, Sarsour AH, Harris MC, Martin MP, Strickland JD, et al. Pathogenesis of Enterococcal Spondylitis caused by Enterococcus cecorum in broiler chickens. Vet Pathol. 2017;54(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  43. Huff GR, Huff WE, Balog JM, Rath NC. The effects of dexamethasone immunosuppression on turkey osteomyelitis complex in an experimental Escherichia coli respiratory infection. Poult Sci. 1998;77(5):654–61.

    Article  CAS  PubMed  Google Scholar 

  44. Borst LB, Suyemoto MM, Sarsour AH, Harris MC, Martin MP, Strickland JD, et al. Pathogenesis of Enterococcal Spondylitis caused by Enterococcus cecorum in broiler chickens. Vet Pathol. 2016;10:0300985816658098.

    Google Scholar 

  45. Latorre JD, Hernandez-Velasco X, Kogut MH, Vicente JL, Wolfenden R, Wolfenden A, et al. Role of a bacillus subtilis direct-fed microbial on digesta viscosity, bacterial translocation, and bone mineralization in turkey poults fed with a rye-based diet. Front Vet Sci [Internet]. 2014;1:26. [cited 2017 Jan 25]. Available from: http://journal.frontiersin.org/article/10.3389/fvets.2014.00026/full

    Google Scholar 

  46. Borst LB, Suyemoto MM, Robbins KM, Lyman RL, Martin MP, Barnes HJ. Molecular epidemiology of Enterococcus cecorum isolates recovered from enterococcal spondylitis outbreaks in the southeastern United States. Avian Pathol. 2012;41(5):479–85.

    Article  PubMed  Google Scholar 

  47. Kibenge FSB, Wilcox GE, Pass DA. Pathogenicity of four strains of Staphylococcus aureus ioslated from chickens with clinical tenosynovitis. Avian Pathol. 1983;12:213–20.

    Article  CAS  PubMed  Google Scholar 

  48. Smeltzer MS, Gillaspy AF. Molecular pathogenesis of staphylococcal osteomyelitis. Poult Sci. 2000;79:1042–9.

    Article  CAS  PubMed  Google Scholar 

  49. Whittow GC. Front matter. In: Sturkie’s avian physiology. 5th ed. [Internet]. San Diego: Academic; 2000:iii [Cited 25 Jan 2017]. Available from: //www.sciencedirect.com/science/article/pii/B9780127476056500298

  50. Martin LT, Martin MP, Barnes HJ. Experimental reproduction of Enterococcal Spondylitis in male broiler breeder chickens. Avian Dis. 2011;55(2):273–8.

    Article  PubMed  Google Scholar 

  51. Parker DS, Armstrong DG. Antibiotic feed additives and livestock production. Proc Nutr Soc. 1987;46(3):415–21.

    Article  CAS  PubMed  Google Scholar 

  52. Boyle EC, Bishop JL, Grassl GA, Finlay BB. Salmonella: from pathogenesis to therapeutics. J Bacteriol. 2007;189(5):1489–95.

    Article  CAS  PubMed  Google Scholar 

  53. Hong HA, Duc LH, Cutting SM. The use of bacterial spore formers as probiotics. FEMS Microbiol Rev. 2005;29(4):813–35.

    Article  CAS  PubMed  Google Scholar 

  54. Ricke SC. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci. 2003;82(4):632–9.

    Article  CAS  PubMed  Google Scholar 

  55. Filho RLA, Higgins JP, Higgins SE, Gaona G, Wolfenden AD, Tellez G, et al. Ability of bacteriophages isolated from different sources to reduce Salmonella enterica Serovar Enteritidis in vitro and in vivo. Poult Sci. 2007;86(9):1904–9.

    Article  Google Scholar 

  56. Tellez G, Pixley C, Wolfenden RE, Layton SL, Hargis BM. Probiotics/direct fed microbials for Salmonella control in poultry. Food Res Int. 2012;45(2):628–33.

    Article  Google Scholar 

  57. Hong HA, Huang J-M, Khaneja R, Hiep LV, Urdaci MC, Cutting SM. The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol. 2008;105(2):510–20.

    Article  CAS  PubMed  Google Scholar 

  58. Vreeland RH, Rosenzweig WD, Powers DW. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature. 2000;407(6806):897–900.

    Article  CAS  PubMed  Google Scholar 

  59. Hoa TT, Duc LH, Isticato R, Baccigalupi L, Ricca E, Van PH, et al. Fate and dissemination of Bacillus subtilis spores in a murine model. Appl Environ Microbiol. 2001;67(9):3819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997;390(6657):249–56.

    Article  CAS  PubMed  Google Scholar 

  61. Latorre JD, Hernandez-Velasco X, Kuttappan VA, Wolfenden RE, Vicente JL, Wolfenden AD, et al. Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model in different poultry diets. Front Vet Sci [Internet]. 2015;2:25. Cited 25 Jan 2017. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672186/

    Google Scholar 

  62. Latorre JD, Hernandez-Velasco X, Bielke LR, Vicente JL, Wolfenden R, Menconi A, et al. Evaluation of a Bacillus direct-fed microbial candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralisation in broiler chickens fed on a rye-based diet. Br Poult Sci. 2015;56(6):723–32.

    Google Scholar 

  63. MacAuliffe T, McGinnis J. Effect of antibiotic supplements to diets containing rye on chick growth. Poult Sci. 1971;50(4):1130–4.

    Article  CAS  PubMed  Google Scholar 

  64. Grammer JC, McGinnis J, Pubols MH. The effects of a pectic enzyme on the growth-depressing and rachitogenic properties of rye for chicks. Poult Sci. 1982;61(9):1891–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Bielke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bielke, L.R., Hargis, B.M., Latorre, J.D. (2017). Impact of Enteric Health and Mucosal Permeability on Skeletal Health and Lameness in Poultry. In: McCabe, L., Parameswaran, N. (eds) Understanding the Gut-Bone Signaling Axis. Advances in Experimental Medicine and Biology, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-319-66653-2_9

Download citation

Publish with us

Policies and ethics