Skip to main content

Probiotics in Gut-Bone Signaling

  • Chapter
  • First Online:
Understanding the Gut-Bone Signaling Axis

Abstract

The intestinal environment is linked to an array of conditions and diseases, including osteoporosis. Human and animal studies indicate that probiotics can benefit intestinal health and may provide a useful therapeutic to prevent and/or treat bone loss. Probiotics are defined as live microorganisms that when administered in adequate amounts will confer a health benefit on the host. In this review, we will focus on (1) probiotics (definition, history, nomenclature, types), (2) the effects of probiotics on bone health, and (3) mechanisms of probiotic prevention of bone pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Osteoporosis Foundation. https://www.nof.org/

  2. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013;24:23–57.

    Article  CAS  PubMed  Google Scholar 

  3. Collins FL, Rios-Arce ND, Schepper JD, Parameswaran N, McCabe LR. The potential of probiotics as a therapy for osteoporosis. Microbiol Spectrum. 2017. 5(4).

    Google Scholar 

  4. Khosla S, Shane E. A crisis in the treatment of osteoporosis. J Bone Miner Res. 2016;31:1485–7.

    Article  PubMed  Google Scholar 

  5. Fukuda S, Ohno H. Gut microbiome and metabolic diseases. Semin Immunopathol. 2014;36:103–14.

    Article  CAS  PubMed  Google Scholar 

  6. Ley R, Turnbaugh P, Klein S, Gordon J. Human Gut microbes associated with obesity. Nature. 2006;444:1022–3.

    Article  CAS  PubMed  Google Scholar 

  7. Collins FL, Irwin R, Bierhalter H, Schepper J, Britton RA, Parameswaran N, McCabe LR. Lactobacillus reuteri 6475 increases bone density in intact females only under an inflammatory setting. PLoS One. 2016;11:e0153180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ohlsson C, Engdahl C, Fåk F, Andersson A, Windahl SH, Farman HH, Movérare-Skrtic S, Islander U, Sjögren K. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One. 2014;9:e92368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. McCabe LR, Irwin R, Schaefer L, Britton RA. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol. 2013;228:1793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang J, Motyl KJ, Irwin R, MacDougald OA, Britton RA, McCabe LR. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic lactobacillus reuteri. Endocrinology. 2015;156:3169–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Azizpour K, Bahrambeygi S, Mahmoodpour S, Azizpour A. History and basic of probiotics. Res J Biol Sci. 2009;4:409–26.

    Google Scholar 

  12. Hamilton-Miller JMT, Gibson GR, Bruck W. Some insights into the derivation and early uses of the word “probiotic”. Br J Nutr. 2003;90:845.

    Article  CAS  PubMed  Google Scholar 

  13. Rijkers GT, de Vos WM, Brummer R-J, Morelli L, Corthier G, Marteau P. Health benefits and health claims of probiotics: bridging science and marketing. Br J Nutr. 2011;106:1291–6.

    Article  CAS  PubMed  Google Scholar 

  14. Fuller R. Probiotics. J Appl Bacteriol Suppl. 1986;63:1S–7S.

    Google Scholar 

  15. FAO. Probiotics in food. Food Nutr Pap. 2001;85:71.

    Google Scholar 

  16. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, Fakiri EM. Health benefits of probiotics: a review. ISRN Nutr. 2013;2013:481651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Morelli L, Capurso L. FAO/WHO guidelines on probiotics 10 years later. J Clin Gastroenterol. 2012;46:10–1.

    Article  Google Scholar 

  18. O’Sullivan MG, Thornton G, O’Sullivan GC, Collins JK. Probiotic bacteria: myth or reality? Trends Food Sci Technol. 1992;3:309–14.

    Article  Google Scholar 

  19. Gogineni VK. Probiotics: history and evolution. J Anc Dis Prev Remedies. 2013;1:1–7.

    Google Scholar 

  20. Gasbarrini G, Bonvicini F, Gramenzi A. Probiotics history. J Clin Gastroenterol. 2016;50:S116–9.

    Article  CAS  PubMed  Google Scholar 

  21. Senok AC, Ismaeel AY, Botta GA. Probiotics: facts and myths. Clin Microbiol Infect. 2005;11:958–66.

    Article  CAS  PubMed  Google Scholar 

  22. Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66:365–78.

    Article  CAS  PubMed  Google Scholar 

  23. Lilly DM, Stillwell RH. Probiotics: growth-promoting factors produced by microorganisms. Science. (80-. 2017;147:747–8.

    Article  Google Scholar 

  24. Anukam K, Reid G. Probiotics: 100 years (1907–2007) after Elie Metchnikoff’s observation. Commun Curr Res Educ Top trends Appl Microbiol. 2007;2:466–74.

    Google Scholar 

  25. Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Krabshuis J, Thomson A, Lemair T. Probiotics and prebiotics. Probiotics prebiotics-World Gastroenterol Organ Glob Guidel. 2011:1–28.

    Google Scholar 

  26. McFarland LV. From yaks to yogurt: the history, development, and current use of probiotics. Clin Infect Dis. 2015;60:S85–90.

    Article  CAS  PubMed  Google Scholar 

  27. Fujii A, Bush JH, Shores KE, Johnson RG, Garascia RJ, Cook ES. Probiotics: antistaphylococcal activity of 4-aminocyclohexanecarboxylic acid, aminobenzoic acid, and their derivatives and structure? Activity relationships. J Pharm Sci. 1977;66:844–8.

    Article  CAS  PubMed  Google Scholar 

  28. Salminen S, Ouwehand A, Benno Y, Lee YK. Probiotics: how should they be defined? Trends Food Sci Technol. 1999;10:107–10.

    Article  CAS  Google Scholar 

  29. Huis in’t Veld JHJ, Havenaar R. Probiotics and health in man and animal. J Chem Technol Biotechnol. 1991;51:562–7.

    Article  Google Scholar 

  30. FAO, WHO. Guidelines for the evaluation of probiotics in food. 2002:1–11.

    Google Scholar 

  31. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:9.

    Article  Google Scholar 

  32. Ozen M, Dinleyici EC. The history of probiotics: the untold story. Benef Microbes. 2015;6:159–65.

    Article  CAS  PubMed  Google Scholar 

  33. Calatayud GA, Suárez JE. A new contribution to the history of probiotics. Benef Microbes. 2017;8:323–5.

    Article  CAS  PubMed  Google Scholar 

  34. Masood MI, Qadir MI, Shirazi JH, Khan IU. Beneficial effects of lactic acid bacteria on human beings. Crit Rev Microbiol. 2011;37:91–8.

    Article  PubMed  Google Scholar 

  35. Brüssow H. Microbiota and healthy ageing: observational and nutritional intervention studies. Microb Biotechnol. 2013;6:326–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lino PA, Martins MAP, De S e Silva ME, De Abreu MHNG. Anxiolytics, sedatives, and hypnotics prescribed by dentists in Brazil in 2010. Biomed Res Int. 2017;2017:1–5.

    Article  Google Scholar 

  37. Metchnikoff E. The prolongation of life; optimistic studies. New York: G.P. Putnam’s Sons; 1908.

    Google Scholar 

  38. Soccol CR, Vandenberghe LP d S, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JDD, Pandey A, Thomaz-Soccol V. The potential of probiotics: a review. Food Technol Biotechnol. 2010;48:413–34.

    CAS  Google Scholar 

  39. Wiley J. Bergey’s manual of systematics of Archaea and bacteria. Bergey’s Man Trust. 2001.

    Google Scholar 

  40. Babel W, Endo I, Enfors S-O, Fiechter A, Hoare M, Hu W-S, Mattiasson B, Nielsen J, Schügerl K, Stephanopoulos G, Von Stockar U, Tsao GT, Ulber R, Wandrey C, Zhong J-J, De Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Engin/Biotechnol. 2008;111:1–66.

    Article  Google Scholar 

  41. Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek. 2002;82:279–89.

    Article  CAS  PubMed  Google Scholar 

  42. Carr FJ, Chill D, Maida N. The lactic acid bacteria: a literature survey. Crit Rev Microbiol. 2002;28:281–370.

    Article  CAS  PubMed  Google Scholar 

  43. Fontana L, Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gil A. Sources, isolation, characterisation and evaluation of probiotics. Br J Nutr. 2013;109(Suppl):S35–50.

    Article  CAS  PubMed  Google Scholar 

  44. Yerlikaya O. Starter cultures used in probiotic dairy product preparation and popular probiotic dairy drinks. Food Sci Technol. 2014;34:221–9.

    Article  Google Scholar 

  45. Gorbach SL. Probiotics and gastrointestinal health. Am J Gastroenterol. 2000;95:2–4.

    Article  Google Scholar 

  46. Tuohy KM, Probert HM, Smejkal CW, Gibson GR. Using probiotics and prebiotics to improve gut health. Drug Discov Today. 2003;8:692–700.

    Article  PubMed  Google Scholar 

  47. Williams NT. Probiotics. Am J Heal Pharm. 2010;67:449–58.

    Article  CAS  Google Scholar 

  48. Franz CMAP, Huch M, Abriouel H, Holzapfel W, Gálvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol. 2011;151:125–40.

    Article  CAS  PubMed  Google Scholar 

  49. Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017;18:2.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.

    Article  CAS  PubMed  Google Scholar 

  51. Rodrigues FC, Castro ASB, Rodrigues VC, Fernandes SA, Fontes EAF, de Oliveira TT, Martino HSD, de Luces Fortes Ferreira CL. Yacon flour and Bifidobacterium longum modulate bone health in rats. J Med Food. 2012;15:664–70.

    Article  CAS  PubMed  Google Scholar 

  52. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, Parameswaran N, McCabe LR. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229:1822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest. 2000;106:1229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hock JM, Gera I, Fonseca J, Raisz LG. Human parathyroid hormone-(l–34) increases bone mass in ovariectomized and orchidectomized rats*. Endocrinology. 1988;122:2899–904.

    Article  CAS  PubMed  Google Scholar 

  55. Yamada C. Role of incretins in the regulation of bone metabolism. Nihon Rinsho. 2011;69:842–7.

    PubMed  Google Scholar 

  56. Ohlsson C, Sjögren K. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 2015;26:69–74.

    Article  CAS  PubMed  Google Scholar 

  57. Parvaneh K, Ebrahimi M, Sabran MR, Karimi G, Hwei ANM, Abdul-Majeed S, Ahmad Z, Ibrahim Z, Jamaluddin R. Probiotics (Bifidobacterium longum ) increase bone mass density and upregulate Sparc and Bmp-2 genes in rats with bone loss resulting from ovariectomy. Biomed Res Int. 2015;2015:1–10.

    Article  CAS  Google Scholar 

  58. Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–38.

    Article  CAS  PubMed  Google Scholar 

  59. Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, Fan Y-M, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Maleta KM, Newgard CB, Ashorn P, Dewey KG, Gordon JI. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 2016; doi:10.1126/science.aad3311.

  60. Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. (80-. ). 2016;351:854.

    Article  CAS  PubMed  Google Scholar 

  61. Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S A. 2016;113:E7554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 2011;14:403–14.

    Article  CAS  PubMed  Google Scholar 

  63. Hyun S. Body size regulation and insulin-like growth factor signaling. Cell Mol Life Sci. 2013;70:2351–65.

    Article  CAS  PubMed  Google Scholar 

  64. Steenhout PG, Rochat F, Hager C. The effect of bifidobacterium lactis on the growth of infants: a pooled analysis of randomized controlled studies. Ann Nutr Metab. 2009;55:334–40.

    Article  CAS  PubMed  Google Scholar 

  65. Lei M, Hua L-M, Wang D-W. The effect of probiotic treatment on elderly patients with distal radius fracture: a prospective double-blind, placebo-controlled randomised clinical trial. Benef Microbes. 2016;7:631–7.

    Article  CAS  PubMed  Google Scholar 

  66. Jafarnejad S, Djafarian K, Fazeli MR, Yekaninejad MS, Rostamian A, Keshavarz SA. Effects of a multispecies probiotic supplement on bone health in osteopenic postmenopausal women: a randomized, double-blind, controlled trial. J Am Coll Nutr. 2017;19:1–10.

    Google Scholar 

  67. Tu M-Y, Chen H-L, Tung Y-T, Kao C-C, Hu F-C, Chen C-M. Short-term effects of kefir-fermented milk consumption on bone mineral density and bone metabolism in a randomized clinical trial of osteoporotic patients. PLoS One. 2015;10:e0144231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Han B, Sivaramakrishnan P, Lin C-C, Neve L, He J, Tay L, Wei R, Sowa J, Sizovs A, Du G, Wang J, Herman C, Wang M. Microbial genetic composition tunes hosts longevity. Cell. 2017;169:1249–62.

    Article  CAS  PubMed  Google Scholar 

  69. Finkelstein JS, Brockwell SE, Mehta V, Greendale GA, Sowers MR, Ettinger B, Lo JC, Johnston JM, Cauley JA, Danielson ME, Neer RM. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J Clin Endocrinol Metab. 2008;93:861–8.

    Article  CAS  PubMed  Google Scholar 

  70. Li J-YJ, Chassaing B, Tyagi AMA, Vaccaro C, Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, Jones RMRRM, Pacifici R. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126:1–15.

    Google Scholar 

  71. Narva M, Rissanen J, Halleen J, Vapaatalo H, Väänänen K, Korpela R. Effects of bioactive peptide, Valyl-Prolyl-Proline (VPP), and lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats. Ann Nutr Metab. 2007;51:65–74.

    Article  CAS  PubMed  Google Scholar 

  72. Manolagas SC, O’Brien CA, Almeida M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol. 2013;9:699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Börjesson AE, Ohlsson C. Sex steroid actions in male bone. Endocr Rev. 2014;35:906–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, Cosman F. Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res. 2004;20:529–35.

    Article  PubMed  Google Scholar 

  75. Wang Y, Sakata T, Elalieh HZ, Munson SJ, Burghardt A, Majumdar S, Halloran BP, Bikle DD. Gender differences in the response of CD-1 mouse bone to parathyroid hormone: potential role of IGF-I. J Endocrinol. 2006;189:279–87.

    Article  CAS  PubMed  Google Scholar 

  76. Harris L, Senagore P, Young VB, McCabe LR. Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health. 2014;11:4745–67.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bousvaros A, Guandalini S, Baldassano RN, Botelho C, Evans J, Ferry GD, Goldin B, Hartigan L, Kugathasan S, Levy J, Murray KF, Oliva-Hemker M, Rosh JR, Tolia V, Zholudev A, Vanderhoof JA, Hibberd PL A randomized, double-blind trial of lactobacillus GG versus placebo in addition to standard maintenance therapy for children with Crohn’s disease. Inflamm Bowel Dis. 2005;11:833.

    Google Scholar 

  79. Hibberd PL, Kleimola L, Fiorino A-M, Botelho C, Haverkamp M, Andreyeva I, Poutsiaka D, Fraser C, Solano-Aguilar G, Snydman DR. No evidence of harms of probiotic lactobacillus rhamnosus GG ATCC 53103 in healthy elderly-a phase I open label study to assess safety, tolerability and cytokine responses. PLoS One. 2014;9:e113456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Li M, Liang P, Li Z, Wang Y, Zhang G, Gao H, Wen S, Tang L. Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis. Front Microbiol. 2015;6:692.

    PubMed  PubMed Central  Google Scholar 

  81. Tremellen K, Pearce K. Dysbiosis of Gut Microbiota (DOGMA) – a novel theory for the development of polycystic ovarian syndrome. Med Hypotheses. 2012;79:104–12. doi:10.1016/j.mehy.2012.04.016.

    Article  PubMed  Google Scholar 

  82. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50:2374–83.

    Article  CAS  PubMed  Google Scholar 

  83. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti J-F, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761.

    Article  CAS  PubMed  Google Scholar 

  84. Irwin R, Lee T, Young VB, Parameswaran N, McCabe LR. Colitis induced bone loss is gender dependent and associated with increased inflammation. Inflamm Bowel Dis. 2013;19:1586.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Guss JD, Horsfield MW, Fontenele FF, Sandoval TN, Luna M, Apoorva F, Lima SF, Bicalho RC, Singh A, Ley RE, van der Meulen MC, Goldring SR, Hernandez CJ. Alterations to the gut microbiome impair bone strength and tissue material properties. J Bone Miner Res. 2017;32:1343.

    Article  CAS  PubMed  Google Scholar 

  86. Chaves de Souza JA, Frasnelli SCT, Curylofo-Zotti F d A, Ávila-Campos MJ, Spolidório LC, Zamboni DS, Graves DT, Rossa C. NOD1 in the modulation of host-microbe interactions and inflammatory bone resorption in the periodontal disease model. Immunology. 2016;149:374–85.

    Article  CAS  PubMed  Google Scholar 

  87. Rosenfeldt V, Benfeldt E, Valerius NH, Pærregaard A, Michaelsen KF. Effect of probiotics on gastrointestinal symptoms and small intestinal permeability in children with atopic dermatitis. J Pediatr. 2004;145:612–6.

    Article  PubMed  Google Scholar 

  88. Stratiki Z, Costalos C, Sevastiadou S, Kastanidou O, Skouroliakou M, Giakoumatou A, Petrohilou V. The effect of a bifidobacter supplemented bovine milk on intestinal permeability of preterm infants. Early Hum Dev. 2007;83:575–9.

    Article  CAS  PubMed  Google Scholar 

  89. Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, Doyle J, Jewell L, De Simone C. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology. 2001;121:580–91.

    Article  CAS  PubMed  Google Scholar 

  90. Zareie M, Johnson-Henry K, Jury J, Yang P-C, Ngan B-Y, McKay DM, Soderholm JD, Perdue MH, Sherman PM. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut. 2006;55:1553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bron PA, Kleerebezem M, Brummer R-J, Cani PD, Mercenier A, MacDonald TT, Garcia-Ródenas CL, Wells JM. Can probiotics modulate human disease by impacting intestinal barrier function? Br J Nutr. 2017;117:93–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKC? Redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol. 2007;9:804–16.

    Article  CAS  PubMed  Google Scholar 

  93. Anderson RC, Cookson AL, McNabb WC, Kelly WJ, Roy NC. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol Lett. 2010;309.:no-no:184.

    CAS  PubMed  Google Scholar 

  94. Resta–Lenert S, Barrett KE. Probiotics and commensals reverse TNF-α– and IFN-γ–induced dysfunction in human intestinal epithelial cells. Gastroenterology. 2006;130:731–46.

    Article  PubMed  CAS  Google Scholar 

  95. Qin H, Zhang Z, Hang X, Jiang Y. L. plantarum prevents enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol. 2009;9:63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Moorthy G, Murali MR, Devaraj SN. Lactobacilli facilitate maintenance of intestinal membrane integrity during Shigella dysenteriae 1 infection in rats. Nutrition. 2009;25:350–8.

    Article  CAS  PubMed  Google Scholar 

  97. Messora MR, Oliveira LFF, Foureaux RC, Taba M, Zangerônimo MG, Furlaneto F a C, Pereira LJ. Probiotic therapy reduces periodontal tissue destruction and improves the intestinal morphology in rats with ligature-induced periodontitis. J Periodontol. 2013;84:1818–26.

    Article  PubMed  Google Scholar 

  98. Garcia VG, Knoll LR, Longo M, Novaes VCN, Assem NZ, Ervolino E, de Toledo BEC, Theodoro LH. Effect of the probiotic Saccharomyces cerevisiae on ligature-induced periodontitis in rats. J Periodontal Res. 2016;51:26–37.

    Article  CAS  PubMed  Google Scholar 

  99. Armour KE, Van’T Hof RJ, Grabowski PS, Reid DM, Ralston SH. Evidence for a pathogenic role of nitric oxide in inflammation-induced osteoporosis. J Bone Miner Res. 1999;14:2137–42.

    Article  CAS  PubMed  Google Scholar 

  100. Ott SJ, Plamondon S, Hart A, Begun A, Rehman A, Kamm MA, Schreiber S. Dynamics of the mucosa-associated flora in ulcerative colitis patients during remission and clinical relapse. J Clin Microbiol. 2008;46:3510–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Harris L, Senagore P, Young VB, McCabe LR. Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol – Gastrointest Liver Physiol. 2009;296

    Google Scholar 

  102. Irwin R, Raehtz S, Parameswaran N, McCabe LR. Intestinal inflammation without weight loss decreases bone density and growth. Am J Physiol – Regul Integr Comp Physiol. 2016;311:R1149.

    Article  PubMed  Google Scholar 

  103. Boyce BF, Xing L. The RANKL/RANK/OPG pathway. Curr Osteoporos Rep. 2007;5:98–104.

    Article  PubMed  Google Scholar 

  104. Madsen KL, Doyle JS, Jewell LD, Tavernini MM, Fedorak RN. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology. 1999;116:1107–14.

    Article  CAS  PubMed  Google Scholar 

  105. Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A, Rittich B, Kozakova H, Schabussova I. Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner. PLoS One. 2015;10:e0134050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B, Akira S, Takeda K, Lee J, Takabayashi K, Raz E. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology. 2004;126:520–8.

    Article  CAS  PubMed  Google Scholar 

  107. Mariman R, Kremer B, Koning F, Nagelkerken L. The probiotic mixture VSL#3 mediates both pro- and anti-inflammatory responses in bone marrow-derived dendritic cells from C57BL/6 and BALB/c mice. Br J Nutr. 2014;112:1088–97.

    Article  CAS  PubMed  Google Scholar 

  108. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008;455:1109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Stewart D, McRitchie S, Li H, Chung J, Sohn J, Kim S, Gao Z, Barber C, Kim J, Ng S, Rogers AB, Sumner S, Zhang X-S, Cadwell K, Knights D, Alekseyenko A, Backhed F, Blaser MJ. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol. 2016;1:16140.

    Article  CAS  PubMed  Google Scholar 

  110. Botolin S, Faugere M-C, Malluche H, Orth M, Meyer R, McCabe LR. Increased bone adiposity and peroxisomal proliferator-activated receptor-? 2 Expression in type I diabetic mice. Endocrinology. 2005;146:3622–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Motyl KJ, Raetz M, Tekalur SA, Schwartz RC, McCabe LR. CCAAT/enhancer binding protein ?-deficiency enhances type 1 diabetic bone phenotype by increasing marrow adiposity and bone resorption. AJP Regul Integr Comp Physiol. 2011;300:R1250–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Narayanan Parameswaran or Laura R. McCabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schepper, J.D. et al. (2017). Probiotics in Gut-Bone Signaling. In: McCabe, L., Parameswaran, N. (eds) Understanding the Gut-Bone Signaling Axis. Advances in Experimental Medicine and Biology, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-319-66653-2_11

Download citation

Publish with us

Policies and ethics