Skip to main content

Prebiotics and Bone

  • Chapter
  • First Online:
Understanding the Gut-Bone Signaling Axis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1033))

Abstract

Recent advancements in food science have resulted in the extraction and synthesis of novel dietary fibers or prebiotics. Subsequently, great interest has emerged in developing strategies to improve metabolic conditions like osteoporosis by modulating the intestinal microbiome with fiber. Prebiotics have been shown to increase calcium absorption in the lower gut of both animals and humans as well as improve measures of bone mineral density and strength in rodent models. Fewer data are available in humans, but data from growing children and postmenopausal women suggest that prebiotics have both short- and long-term effects that beneficially affect bone turnover and mineral accretion in the skeleton. Currently, the exact mechanism by which these products elicit their effects on bone is poorly understood, but emerging data suggest that the gut microbiota may be involved in one or more direct and indirect pathways. The most well-accepted mechanism is through microbial fermentation of prebiotics which results in the production of short-chain fatty acids and a concomitant decrease in pH which increases the bioavailability of calcium in the colon. While other mechanisms may be eliciting a prebiotic effect on bone, the current data suggest that novel dietary fibers may be an affordable and effective method of maximizing mineral accretion in growing children and preventing bone loss in later years when osteoporosis is a greater risk. This chapter will discuss the dynamic role of prebiotics in bone health by discussing the current state of the art, addressing gaps in knowledge and their role in public health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Vos WM, de Vos EAJ. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev. 2012;70(Suppl 1):S45–56. doi:10.1111/j.1753-4887.2012.00505.x. ADDIN Mendeley Bibliography CSL_BIBLIOGRAPHY

    Article  PubMed  Google Scholar 

  2. Ly NP, Litonjua A, Gold DR, Celedón JC. Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity? J Allergy Clin Immunol. 2011;127:1087–1094.–6. doi:10.1016/j.jaci.2011.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanz Y. Gut microbiota and probiotics in maternal and infant health. Am J Clin Nutr. 2011;94:2000S–5S. doi:10.3945/ajcn.110.001172.

    Article  CAS  PubMed  Google Scholar 

  4. Flint HJ. The impact of nutrition on the human microbiome. Nutr Rev. 2012;70(Suppl 1):S10–3. doi:10.1111/j.1753-4887.2012.00499.x.

    Article  PubMed  Google Scholar 

  5. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148:1258–70. doi:10.1016/j.cell.2012.01.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–73. doi:10.1126/science.1223490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, et al. Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods. n.d. 2010;7:1–19. doi:10.1616/1476-2137.

  8. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104(Suppl):S1–63. doi:10.1017/S0007114510003363.

    Article  CAS  PubMed  Google Scholar 

  9. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93. doi:10.1038/sj.embor.7400731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi:10.1038/nature08821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48. doi:10.1016/j.cell.2006.02.017.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NHL, et al. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res. 2011;10:5512–22. doi:10.1021/pr2007945.

    Article  CAS  PubMed  Google Scholar 

  13. Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27:1357–67. doi:10.1002/jbmr.1588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4:478–85. doi:10.1038/nri1373.

    Article  CAS  PubMed  Google Scholar 

  15. McCabe L, Britton RA, Parameswaran N. Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep. 2015;13:363–71. doi:10.1007/s11914-015-0292-x.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med. 2000;191:275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA. Proinflammatory cytokine (TNFalpha/IL-1alpha) induction of human osteoclast formation. J Pathol. 2002;198:220–7. doi:10.1002/path.1190.

    Article  CAS  PubMed  Google Scholar 

  18. Weitzmann MN, Pacifici R. T cells: unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis. Ann N Y Acad Sci. 2007;1116:360–75. doi:10.1196/annals.1402.068.

    Article  CAS  PubMed  Google Scholar 

  19. Irwin R, Lee T, Young VB, Parameswaran N, McCabe LR. Colitis-induced bone loss is gender dependent and associated with increased inflammation. Inflamm Bowel Dis. 2013;19:1586–97. doi:10.1097/MIB.0b013e318289e17b.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X, et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest. 2007;117:122–32. doi:10.1172/JCI30074.

    Article  CAS  PubMed  Google Scholar 

  21. Rosen CJ. Breaking into bone biology: serotonin’s secrets. Nat Med. 2009;15:145–6. doi:10.1038/nm0209-145.

    Article  CAS  PubMed  Google Scholar 

  22. Yadav VK, Ryu J-H, Suda N, Tanaka KF, Gingrich JA, Schütz G, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell. 2008;135:825–37. doi:10.1016/j.cell.2008.09.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nam S-S, Lee JC, Kim HJ, Park J-W, Lee J-M, Suh J-Y, et al. Serotonin inhibits osteoblast differentiation and bone regeneration in rats. J Periodontol. 2016;87:461–9. doi:10.1902/jop.2015.150302.

    Article  PubMed  Google Scholar 

  24. Warden SJ, Robling AG, Sanders MS, Bliziotes MM, Turner CH. Inhibition of the serotonin (5-hydroxytryptamine) transporter reduces bone accrual during growth. Endocrinology. 2005;146:685–93. doi:10.1210/en.2004-1259.

    Article  CAS  PubMed  Google Scholar 

  25. Eom C-S, Lee H-K, Ye S, Park SM, Cho K-H. Use of selective serotonin reuptake inhibitors and risk of fracture: a systematic review and meta-analysis. J Bone Miner Res. 2012;27:1186–95. doi:10.1002/jbmr.1554.

    Article  CAS  PubMed  Google Scholar 

  26. Yun H-M, Park K-R, Hong JT, Kim E-C, Mann JJ, Cote F, et al. Peripheral serotonin-mediated system suppresses bone development and regeneration via serotonin 6 G-protein-coupled receptor. Sci Rep. 2016;6:30985. doi:10.1038/srep30985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yadav VK, Balaji S, Suresh PS, Liu XS, Lu X, Li Z, et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med. 2010;16:308–12. doi:10.1038/nm.2098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31:266–300. doi:10.1210/er.2009-0024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weitzmann MN, Pacifici R, Bouxsein ML, Komm BS, Tomkinson A, Gevers EF, et al. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest. 2006;116:1186–94. doi:10.1172/JCI28550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39:400–12. doi:10.1016/j.immuni.2013.08.013.

    Article  CAS  PubMed  Google Scholar 

  31. Gibson GR, Beatty ER, Wang X, Cummings JH. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology. 1995;108:975–82.

    Article  CAS  PubMed  Google Scholar 

  32. Yazawa K, Imai K, Tamura Z. Oligosaccharides and polysaccharides specifically utilizable by bifidobacteria. Chem Pharm Bull (Tokyo). 1978;26:3306–11.

    Article  CAS  Google Scholar 

  33. Mao B, Li D, Zhao J, Liu X, Gu Z, Chen YQ, et al. Metagenomic insights into the effects of fructo-oligosaccharides (FOS) on the composition of fecal microbiota in mice. J Agric Food Chem. 2015;63:856–63. doi:10.1021/jf505156h.

    Article  CAS  PubMed  Google Scholar 

  34. Minami Y, Yazawa K, Nakamura K, Tamura Z. Selectivity and efficiency of utilization of galactosyl-oligosaccharides by bifidobacteria. Chem Pharm Bull (Tokyo). 1985;33:710–4.

    Article  CAS  Google Scholar 

  35. Barile D, Rastall RA. Human milk and related oligosaccharides as prebiotics. Curr Opin Biotechnol. 2013;24:214–9. doi:10.1016/j.copbio.2013.01.008.

    Article  CAS  PubMed  Google Scholar 

  36. Vulevic J, Juric A, Tzortzis G, Gibson GR. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr. 2013;143:324–31. doi:10.3945/jn.112.166132.

    Article  CAS  PubMed  Google Scholar 

  37. Vulevic J, Juric A, Walton GE, Claus SP, Tzortzis G, Toward RE, et al. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br J Nutr. 2015;114:586–95. doi:10.1017/S0007114515001889.

    Article  CAS  PubMed  Google Scholar 

  38. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Forum Nutr. 2013;5:1417–35. doi:10.3390/nu5041417.

    CAS  Google Scholar 

  39. Sabater-Molina M, Larqué E, Torrella F, Zamora S. Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem. 2009;65:315–28. doi:10.1007/BF03180584.

    Article  CAS  PubMed  Google Scholar 

  40. Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourié B, et al. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr. 2004;80:1658–64.

    CAS  PubMed  Google Scholar 

  41. Bode L. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr. 2006;136:2127–30.

    CAS  PubMed  Google Scholar 

  42. Boehm G, Moro G. Structural and functional aspects of prebiotics used in infant nutrition. J Nutr. 2008;138:1818S–28S.

    CAS  PubMed  Google Scholar 

  43. Coppa GV, Zampini L, Galeazzi T, Gabrielli O. Prebiotics in human milk: a review. Dig Liver Dis. 2006;38(Suppl 2):S291–4. doi:10.1016/S1590-8658(07)60013-9.

    Article  PubMed  Google Scholar 

  44. Fanaro S, Boehm G, Garssen J, Knol J, Mosca F, Stahl B, et al. Galacto-oligosaccharides and long-chain fructo-oligosaccharides as prebiotics in infant formulas: a review. Acta Paediatr. 2007;94:22–6. doi:10.1111/j.1651-2227.2005.tb02150.x.

    Article  Google Scholar 

  45. Torres DPM, Gonçalves M, do Pilar F, Teixeira JA, Rodrigues LR. Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr Rev Food Sci Food Saf. 2010;9:438–54. doi:10.1111/j.1541-4337.2010.00119.x.

    Article  CAS  Google Scholar 

  46. Hernandez-Hernandez O, Marin-Manzano MC, Rubio LA, Moreno FJ, Sanz ML, Clemente A. Monomer and linkage type of galacto-oligosaccharides affect their resistance to ileal digestion and prebiotic properties in rats. J Nutr. 2012;142:1232–9. doi:10.3945/jn.111.155762.

    Article  CAS  PubMed  Google Scholar 

  47. van Leeuwen SS, Kuipers BJH, Dijkhuizen L, Kamerling JP. Comparative structural characterization of 7 commercial galacto-oligosaccharide (GOS) products. Carbohydr Res. 2016;425:48–58. doi:10.1016/j.carres.2016.03.006.

    Article  PubMed  CAS  Google Scholar 

  48. Chonan O, Matsumoto K, Watanuki M. Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem. 1995;59:236–9. doi:10.1271/bbb.59.236.

    Article  CAS  PubMed  Google Scholar 

  49. van den Heuvel E, Schoterman M, Muijs T. Trans-galactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr. 2000;130:2938–42.

    PubMed  Google Scholar 

  50. Schaafsma G, Visser WJ, Dekker PR, Van Schaik M. Effect of dietary calcium supplementation with lactose on bone in vitamin D-deficient rats. Bone. 1987;8:357–62. doi:10.1016/8756-3282(87)90067-6.

    Article  CAS  PubMed  Google Scholar 

  51. Griessen M, Cochet B, Infante F, Jung A, Bartholdi P, Donath A, et al. Calcium absorption from milk in lactase-deficient subjects. Am J Clin Nutr. 1989;49:377–84.

    CAS  PubMed  Google Scholar 

  52. Cochet B, Jung A, Griessen M, Bartholdi P, Schaller P, Alfred D, et al. Effects of lactose on intestinal calcium absorption in normal and lactase-deficient subjects. Gastroenterology. 1960;84:935–40. doi:10.5555/URI:PII:0016508583901944.

    Google Scholar 

  53. Tremaine WJ, Newcomer AD, Riggs BL, McGill DB. Calcium absorption from milk in lactase-deficient and lactase-sufficient adults. Dig Dis Sci. 1986;31:376–8.

    Article  CAS  PubMed  Google Scholar 

  54. Mizota T, Tamura Y, Tomita M, Okonogi S. Lactulose as a sugar with physiological significance (activity as a Bifidus Factor). Bull – Fed Int Lait (Belgium) Int Dairy Fed No 212 1987. n.d..

    Google Scholar 

  55. Seki N, Hamano H, Iiyama Y, Asano Y, Kokubo S, Yamauchi K, et al. Effect of lactulose on calcium and magnesium absorption: a study using stable isotopes in adult men. J Nutr Sci Vitaminol (Tokyo). 2007;53:5–12.

    Article  CAS  Google Scholar 

  56. Brommage R, Binacua C, Antille S, Carrié AL. Intestinal calcium absorption in rats is stimulated by dietary lactulose and other resistant sugars. J Nutr. 1993;123:2186–94.

    CAS  PubMed  Google Scholar 

  57. van den Heuvel EGHM, Muijs T, van Dokkum W, Schaafsma G. Lactulose stimulates calcium absorption in postmenopausal women. J Bone Miner Res. 1999;14:1211–6. doi:10.1359/jbmr.1999.14.7.1211.

    Article  PubMed  Google Scholar 

  58. Housez B, Cazaubiel M, Vergara C, Bard J-M, Adam A, Einerhand A, et al. Evaluation of digestive tolerance of a soluble corn fibre. J Hum Nutr Diet. 2012;25:488–96. doi:10.1111/j.1365-277X.2012.01252.x.

    Article  CAS  PubMed  Google Scholar 

  59. Tate & Lyle. Soluble corn fiber: health benefits and product applications 2014. http://www.foodnutritionknowledge.info/. Accessed 30 Aug 2016.

  60. Costabile A, Deaville ER, Morales AM, Gibson GR, Huttenhower C, Ding T, et al. Prebiotic potential of a maize-based soluble fibre and impact of dose on the human gut microbiota. PLoS One. 2016;11:e0144457. doi:10.1371/journal.pone.0144457.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Weaver CM, Martin BR, Story JA, Hutchinson I, Sanders L. Novel fibers increase bone calcium content and strength beyond efficiency of large intestine fermentation. J Agric Food Chem. 2010;58:8952–7. doi:10.1021/jf904086d.

    Article  CAS  PubMed  Google Scholar 

  62. Whisner CM, Martin BR, Nakatsu CH, McCabe GP, McCabe LD, Peacock M, et al. Soluble maize fibre affects short-term calcium absorption in adolescent boys and girls: a randomised controlled trial using dual stable isotopic tracers. Br J Nutr. 2014;112:446–56. doi:10.1017/S0007114514000981.

    Article  CAS  PubMed  Google Scholar 

  63. Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald-Clarke CJ, McCabe LD, et al. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: a randomized dose-response trial in free-living pubertal females. J Nutr. 2016;146:1298–306. doi:10.3945/jn.115.227256.

    Article  CAS  PubMed  Google Scholar 

  64. Jakeman SA, Henry CN, Martin BR, McCabe GP, McCabe LD, Jackson GS, et al. Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: a randomized crossover trial. Am J Clin Nutr. 2016; doi:10.3945/ajcn.116.132761.

  65. Coxam V. Inulin-type fructans and bone health: state of the art and perspectives in the management of osteoporosis. Br J Nutr. 2005;93(Suppl 1):S111–23.

    Article  CAS  PubMed  Google Scholar 

  66. Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, et al. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr. 2005;82:471–6.

    CAS  PubMed  Google Scholar 

  67. Abrams SA, Griffin IJ, Hawthorne KM. Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton. J Nutr. 2007;137:2524S–6S.

    CAS  PubMed  Google Scholar 

  68. Abrams SA, Hawthorne KM, Aliu O, Hicks PD, Chen Z, Griffin IJ. An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans. J Nutr. 2007;137:2208–12.

    CAS  PubMed  Google Scholar 

  69. Griffin IJ, Davila PM, Abrams SA. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr. 2002;87(Suppl 2):S187–91. doi:10.1079/BJNBJN/2002536.

    Article  CAS  PubMed  Google Scholar 

  70. Griffin IJ, Hicks PM, Heaney RP, Abrams SA, Roberfroid MB, Griffin IJ, et al. Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption. Nutr Res. 2003;23:901–9. doi:10.1016/S0271-5317(03)00085-X.

    Article  CAS  Google Scholar 

  71. Holloway L, Moynihan S, Abrams SA, Kent K, Hsu AR, Friedlander AL. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr. 2007;97:365–72. doi:10.1017/S000711450733674X.

    Article  CAS  PubMed  Google Scholar 

  72. Bryk G, Coronel MZ, Pellegrini G, Mandalunis P, Rio ME, de Portela MLPM, et al. Effect of a combination GOS/FOS® prebiotic mixture and interaction with calcium intake on mineral absorption and bone parameters in growing rats. Eur J Nutr. 2015;54:913–23. doi:10.1007/s00394-014-0768-y.

    Article  CAS  PubMed  Google Scholar 

  73. Ohta A, Uehara M, Sakai K, Takasaki M, Adlercreutz H, Morohashi T, et al. A combination of dietary fructooligosaccharides and isoflavone conjugates increases femoral bone mineral density and equol production in ovariectomized mice. J Nutr. 2002;132:2048–54.

    CAS  PubMed  Google Scholar 

  74. Hooshmand S, Juma S, Arjmandi BH. Combination of genistin and fructooligosaccharides prevents bone loss in ovarian hormone deficiency. J Med Food. 2010;13:320–5. doi:10.1089/jmf.2009.0059.

    Article  CAS  PubMed  Google Scholar 

  75. Legette LL, Lee W-H, Martin BR, Story JA, Arabshahi A, Barnes S, et al. Genistein, a phytoestrogen, improves total cholesterol, and synergy, a prebiotic, improves calcium utilization, but there were no synergistic effects. Menopause. 2011;18:923–31. doi:10.1097/gme.0b013e3182116e81.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zafar TA, Weaver CM, Jones K, Moore DR, Barnes S. Inulin effects on bioavailability of soy isoflavones and their calcium absorption enhancing ability. J Agric Food Chem. 2004;52:2827–31. doi:10.1021/jf035080f.

    Article  CAS  PubMed  Google Scholar 

  77. Devareddy L, Khalil DA, Korlagunta K, Hooshmand S, Bellmer DD, Arjmandi BH. The effects of fructo-oligosaccharides in combination with soy protein on bone in osteopenic ovariectomized rats. Menopause. 2006;13:692–9. doi:10.1097/01.gme.0000195372.74944.71.

    Article  PubMed  Google Scholar 

  78. Arjmandi BH, Johnson CD, Campbell SC, Hooshmand S, Chai SC, Akhter MP. Combining fructooligosaccharide and dried plum has the greatest effect on restoring bone mineral density among select functional foods and bioactive compounds. J Med Food. 2010;13:312–9. doi:10.1089/jmf.2009.0068.

    Article  CAS  PubMed  Google Scholar 

  79. Rodrigues FC, Castro ASB, Rodrigues VC, Fernandes SA, Fontes EAF, de Oliveira TT, et al. Yacon flour and Bifidobacterium longum modulate bone health in rats. J Med Food. 2012;15:664–70. doi:10.1089/jmf.2011.0296.

    Article  CAS  PubMed  Google Scholar 

  80. Pérez-Conesa D, López G, Abellán P, Ros G. Bioavailability of calcium, magnesium and phosphorus in rats fed probiotic, prebiotic and synbiotic powder follow-up infant formulas and their effect on physiological and nutritional parameters. J Sci Food Agric. 2006;86:2327–36. doi:10.1002/jsfa.2618.

    Article  CAS  Google Scholar 

  81. Pérez-Conesa D, López G, Ros G. Effects of probiotic, prebiotic and synbiotic follow-up infant formulas on large intestine morphology and bone mineralisation in rats. J Sci Food Agric. 2007;87:1059–68. doi:10.1002/jsfa.2812.

    Article  CAS  Google Scholar 

  82. Igarashi M, Iiyama Y, Kato R, Tomita M, Omi N, Ezawa I. Effect of Bifidobacterium longum and lactulose on the strength of bone in ovariectomized osteoporosis model rats. Bifidus Flores Fruct Semin. 1994;7:139–47.

    Google Scholar 

  83. Weaver CM. Diet, gut microbiome, and bone health. Curr Osteoporos Rep. 2015;13:125–30. doi:10.1007/s11914-015-0257-0.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Park C, Weaver C. Calcium and bone health: influence of prebiotics. Funct Food Rev. 2011;3:62–72.

    Google Scholar 

  85. Whisner C, Weaver C. Interactions of probiotics and prebiotics with minerals. In: Ötleş S, editor. Probiotics prebiotics food. Nutr. Boca Raton, FL Heal. CRC Press; 2013. p. 200–31.

    Google Scholar 

  86. Ohta A, Motohashi Y, Sakai K, Hirayama M, Adachi T, Sakuma K. Dietary fructooligosaccharides increase calcium absorption and levels of mucosal calbindin-D9k in the large intestine of gastrectomized rats. Scand J Gastroenterol. 1998;33:1062–8.

    Article  CAS  PubMed  Google Scholar 

  87. Ohta A, Ohtsuki M, Baba S, Adachi T, Sakata T, Sakaguchi E. Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. J Nutr. 1995;125:2417–24.

    CAS  PubMed  Google Scholar 

  88. Chonan O, Watanuki M. The effect of 6´-galactooligosaccharides on bone mineralization of rats adapted to different levels of dietary calcium. Int J Vitam Nutr Res Int Z Vitam Ernährungsforschung J Int Vitaminol Nutr. 1996;66:244–9.

    Google Scholar 

  89. Lobo AR, Colli C, Filisetti TMCC. Fructooligosaccharides improve bone mass and biomechanical properties in rats. Nutr Res. 2006;26:413–20. doi:10.1016/j.nutres.2006.06.019.

    Article  CAS  Google Scholar 

  90. Wang Y, Zeng T, Wang S, Wang W, Wang Q, Yu H-X. Fructo-oligosaccharides enhance the mineral absorption and counteract the adverse effects of phytic acid in mice. Nutrition. 2010;26:305–11. doi:10.1016/j.nut.2009.04.014.

    Article  PubMed  CAS  Google Scholar 

  91. Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, McCabe LD, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem. 2011;59:6501–10. doi:10.1021/jf2009777.

    Article  CAS  PubMed  Google Scholar 

  92. Legette LL, Lee W, Martin BR, Story JA, Campbell JK, Weaver CM. Prebiotics enhance magnesium absorption and inulin-based fibers exert chronic effects on calcium utilization in a postmenopausal rodent model. J Food Sci. 2012;77:H88–94. doi:10.1111/j.1750-3841.2011.02612.x.

    Article  CAS  PubMed  Google Scholar 

  93. Ohta A, Ohtuki M, Takizawa T, Inaba H, Adachi T, Kimura S. Effects of fructooligosaccharides on the absorption of magnesium and calcium by cecectomized rats. Int J Vitam Nutr Res Int Z Vitam Ernährungsforschung J Int Vitaminol Nutr. 1994;64:316–23.

    CAS  Google Scholar 

  94. Delzenne N, Aertssens J, Verplaetse H, Roccaro M, Roberfroid M. Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci. 1995;57:1579–87.

    Article  CAS  PubMed  Google Scholar 

  95. Lopez HW, Coudray C, Levrat-Verny MA, Feillet-Coudray C, Demigné C, Rémésy C. Fructooligosaccharides enhance mineral apparent absorption and counteract the deleterious effects of phytic acid on mineral homeostasis in rats. J Nutr Biochem. 2000;11:500–8.

    Article  CAS  PubMed  Google Scholar 

  96. Rondón LJ, Rayssiguier Y, Mazur A. Dietary inulin in mice stimulates Mg2+ absorption and modulates TRPM6 and TRPM7 expression in large intestine and kidney. Magnes Res. 2008;21:224–31.

    PubMed  Google Scholar 

  97. Coudray C, Feillet-Coudray C, Gueux E, Mazur A, Rayssiguier Y. Dietary inulin intake and age can affect intestinal absorption of zinc and copper in rats. J Nutr. 2006;136:117–22.

    CAS  PubMed  Google Scholar 

  98. Roberfroid MB, Cumps J, Devogelaer JP. Dietary chicory inulin increases whole-body bone mineral density in growing male rats. J Nutr. 2002;132:3599–602.

    CAS  PubMed  Google Scholar 

  99. García-Vieyra MI, Del Real A, López MG. Agave fructans: their effect on mineral absorption and bone mineral content. J Med Food. 2014;17:1247–55. doi:10.1089/jmf.2013.0137.

    Article  PubMed  CAS  Google Scholar 

  100. Levrat MA, Rémésy C, Demigné C. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr. 1991;121:1730–7.

    CAS  PubMed  Google Scholar 

  101. Coudray C, Rambeau M, Feillet-Coudray C, Tressol JC, Demigne C, Gueux E, et al. Dietary inulin intake and age can significantly affect intestinal absorption of calcium and magnesium in rats: a stable isotope approach. Nutr J. 2005;4:29. doi:10.1186/1475-2891-4-29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Coudray C, Tressol JC, Gueux E, Rayssiguier Y. Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur J Nutr. 2003;42:91–8. doi:10.1007/s00394-003-0390-x.

    Article  CAS  PubMed  Google Scholar 

  103. Zafar TA, Weaver CM, Zhao Y, Martin BR, Wastney ME. Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J Nutr. 2004;134:399–402.

    CAS  PubMed  Google Scholar 

  104. Mitamura R, Hara H. Ingestion of difructose anhydride III partially restores calcium absorption impaired by vitamin D and estrogen deficiency in rats. Eur J Nutr. 2006;45:242–9. doi:10.1007/s00394-006-0592-0.

    Article  CAS  PubMed  Google Scholar 

  105. Scholz-Ahrens KE, Açil Y, Schrezenmeir J. Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats*. Br J Nutr. 2002;88:365–77. doi:10.1079/BJN2002661.

    Article  CAS  PubMed  Google Scholar 

  106. Morohashi T, Sano T, Ohta A, Yamada S. True calcium absorption in the intestine is enhanced by fructooligosaccharide feeding in rats. J Nutr. 1998;128:1815–8.

    CAS  PubMed  Google Scholar 

  107. Coudray C, Feillet-Coudray C, Tressol JC, Gueux E, Thien S, Jaffrelo L, et al. Stimulatory effect of inulin on intestinal absorption of calcium and magnesium in rats is modulated by dietary calcium intakes short- and long-term balance studies. Eur J Nutr. 2005;44:293–302. doi:10.1007/s00394-004-0526-7.

    Article  CAS  PubMed  Google Scholar 

  108. Nzeusseu A, Dienst D, Haufroid V, Depresseux G, Devogelaer J-P, Manicourt D-H. Inulin and fructo-oligosaccharides differ in their ability to enhance the density of cancellous and cortical bone in the axial and peripheral skeleton of growing rats. Bone. 2006;38:394–9. doi:10.1016/j.bone.2005.09.006.

    Article  CAS  PubMed  Google Scholar 

  109. Shiga K, Nishimukai M, Tomita F, Hara H. Ingestion of difructose anhydride III, a non-digestible disaccharide, improves postgastrectomy osteopenia in rats. Scand J Gastroenterol. 2006;41:1165–73. doi:10.1080/00365520600575753.

    Article  CAS  PubMed  Google Scholar 

  110. Lobo AR, Filho JM, Alvares EP, Cocato ML, Colli C. Effects of dietary lipid composition and inulin-type fructans on mineral bioavailability in growing rats. Nutrition. 2009;25:216–25. doi:10.1016/j.nut.2008.08.002.

    Article  CAS  PubMed  Google Scholar 

  111. Takahara S, Morohashi T, Sano T, Ohta A, Yamada S, Sasa R. Fructooligosaccharide consumption enhances femoral bone volume and mineral concentrations in rats. J Nutr. 2000;130:1792–5.

    CAS  PubMed  Google Scholar 

  112. Demigné C, Jacobs H, Moundras C, Davicco M-J, Horcajada M-N, Bernalier A, et al. Comparison of native or reformulated chicory fructans, or non-purified chicory, on rat cecal fermentation and mineral metabolism. Eur J Nutr. 2008;47:366–74. doi:10.1007/s00394-008-0736-5.

    Article  PubMed  Google Scholar 

  113. Mathey J, Puel C, Kati-Coulibaly S, Bennetau-Pelissero C, Davicco MJ, Lebecque P, et al. Fructooligosaccharides maximize bone-sparing effects of soy isoflavone-enriched diet in the ovariectomized rat. Calcif Tissue Int. 2004;75:169–79. doi:10.1007/s00223-004-0128-7.

    Article  CAS  PubMed  Google Scholar 

  114. van den Heuvel EGHM, Muys T, van Dokkum W, Schaafsma G. Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr. 1999;69:544–8.

    PubMed  Google Scholar 

  115. van den Heuvel EGHM, Schaafsma G, Muys T, van Dokkum W. Nondigestible oligosaccharides do not interfere with calcium and nonheme-iron absorption in young, healthy men. Am J Clin Nutr. 1998;67:445–51.

    PubMed  Google Scholar 

  116. Whisner CM, Martin BR, Schoterman MHC, Nakatsu CH, McCabe LD, McCabe GP, et al. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br J Nutr. 2013;110:1292–303. doi:10.1017/S000711451300055X.

    Article  CAS  PubMed  Google Scholar 

  117. van den Heuvel EGHM, Muijs T, Brouns F, Hendriks HFJ. Short-chain fructo-oligosaccharides improve magnesium absorption in adolescent girls with a low calcium intake. Nutr Res. 2009;29:229–37. doi:10.1016/j.nutres.2009.03.005.

    Article  PubMed  CAS  Google Scholar 

  118. Martin BR, Braun MM, Wigertz K, Bryant R, Zhao Y, Lee W, et al. Fructo-oligosaccharides and calcium absorption and retention in adolescent girls. J Am Coll Nutr. 2010;29:382–6.

    Article  CAS  PubMed  Google Scholar 

  119. Tahiri M, Tressol JC, Arnaud J, Bornet FRJ, Bouteloup-Demange C, Feillet-Coudray C, et al. Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women: a stable-isotope study. Am J Clin Nutr. 2003;77:449–57.

    CAS  PubMed  Google Scholar 

  120. Yap KW, Mohamed S, Yazid AM, Maznah I, Meyer DM. Dose-response effects of inulin on the faecal short-chain fatty acids content and mineral absorption of formula-fed infants. Nutr Food Sci. 2005;35: 208–19. doi: 10.1080/1040 8399509527714

    Google Scholar 

  121. Mineo H, Hara H, Tomita F. Short-chain fatty acids enhance diffusional ca transport in the epithelium of the rat cecum and colon. Life Sci. 2001;69:517–26.

    Article  CAS  PubMed  Google Scholar 

  122. Heijnen AM, Brink EJ, Lemmens AG, Beynen AC. Ileal pH and apparent absorption of magnesium in rats fed on diets containing either lactose or lactulose. Br J Nutr. 1993;70:747–56.

    Article  CAS  PubMed  Google Scholar 

  123. Fanaro S, Marten B, Bagna R, Vigi V, Fabris C, Peña-Quintana L, et al. Galacto-oligosaccharides are bifidogenic and safe at weaning: a double-blind randomized multicenter study. J Pediatr Gastroenterol Nutr. 2009;48:82–8. doi:10.1097/MPG.0b013e31817b6dd2.

    Article  CAS  PubMed  Google Scholar 

  124. Kim YY (Kyung HUSR of K, Jang KH (Samcheok NUSR of K, Kang SA (Konkuk USR of K, Ha WK (Pasteur MC. L. HR of K, Lee EY (Kyung HUSR of K, Cho YH (Kyung HUSR of K, et al. The effect of chicory fructan fiber on calcium absorption and bone metabolism in Korean postmenopausal women. Nutr Sci. 2004.

    Google Scholar 

  125. Slevin MM, Allsopp PJ, Magee PJ, Bonham MP, Naughton VR, Strain JJ, et al. Supplementation with calcium and short-chain fructo-oligosaccharides affects markers of bone turnover but not bone mineral density in postmenopausal women. J Nutr. 2014;144:297–304. doi:10.3945/jn.113.188144.

    Article  CAS  PubMed  Google Scholar 

  126. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13:517–26. doi:10.1016/j.cmet.2011.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li C-J, Li RW, Elsasser TH. MicroRNA (miRNA) expression is regulated by butyrate-induced epigenetic modulation of gene expression in bovine cells. Genet Epigenet. 2010;3:23–32.

    CAS  Google Scholar 

  128. Henagan T, Navard A, Ye J. Sodium butyrate remodels whole genome nucleosome maps and attenuates high fat diet-induced mitochondrial dysfunction in skeletal muscle from C57BL6/J mice (1072.1). FASEB J. 2014;28:1072.1.

    Google Scholar 

  129. Raschka L, Daniel H. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone. 2005;37:728–35. doi:10.1016/j.bone.2005.05.015.

    Article  CAS  PubMed  Google Scholar 

  130. Scheppach W, Bartram P, Richter A, Richter F, Liepold H, Dusel G, et al. Effect of short-chain fatty acids on the human colonic mucosa in vitro. JPEN J Parenter Enteral Nutr. n.d. 1992;16:43–8.

    Google Scholar 

  131. Fukushima A, Ohta A, Sakai K, Sakuma K. Expression of calbindin-D9k, VDR and Cdx-2 messenger RNA in the process by which fructooligosaccharides increase calcium absorption in rats. J Nutr Sci Vitaminol (Tokyo). 2005;51:426–32. doi:10.3177/jnsv.51.426.

    Article  CAS  Google Scholar 

  132. Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21:1489–95. doi:10.1359/jbmr.060601.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27:1281–386. doi:10.1007/s00198-015-3440-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Scientific Report of the 2015 Dietary Guidelines Advisory Committee. n.d.. http://www.health.gov/dietaryguidelines/2015-scientific-report/. Accessed 23 July 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connie M. Weaver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whisner, C.M., Weaver, C.M. (2017). Prebiotics and Bone. In: McCabe, L., Parameswaran, N. (eds) Understanding the Gut-Bone Signaling Axis. Advances in Experimental Medicine and Biology, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-319-66653-2_10

Download citation

Publish with us

Policies and ethics