Skip to main content

Autoimmunity: Aging Mouse Model for Autoimmune Diseases

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

Recent evidences suggest that the apoptotic pathway plays a central role in tolerazing T cells to tissue-specific self-antigen and may drive the age-related autoimmune phenomenon. Primary Sjögren’s syndrome (SS) is an autoimmune disorder characterized by lymphocytic infiltrates and destruction of the exocrine glands and systemic production of autoantibodies to the ribonucleoprotein (RNP) particles SS-A/Ro and SS-B/La. We found that aging-associated disturbances in T cell homeostasis are accelerated in the animal model with SS, resulting in the development of extraglandular manifestation including autoimmune arthritis and interstitial pneumonia. We demonstrated that tissue-specific apoptosis may contribute to autoantigen cleavage, leading to the age-related acceleration of autoimmune exocrinopathy. The immune system undergoes profound changes with advancing age that are beginning to be understood and that need to be incorporated into the pathogenesis of SS. The studies reviewed the molecular mechanisms on aging-associated progression and acceleration in animal model of autoimmune exocrinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Augstein P et al (1998) Apoptosis and beta-cell destruction in pancreatic islets of NOD mice with spontaneous and cyclophosphamide-accelerated diabetes. Diabetologia 41:1381–1388

    Article  CAS  PubMed  Google Scholar 

  • Bardos T et al (2002) Mice lacking endogenous major histocompatibility complex class II develop arthritis resembling psoriatic arthritis at an advanced age. Arthritis Rheum 46:2465–2475

    Article  CAS  PubMed  Google Scholar 

  • Bieganowska KD et al (1997) Direct ex vivo analysis of activated, Fas-sensitive autoreactive T cells in human autoimmune disease. J Exp Med 185:1585–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner T et al (1995) Cell-autonomous Fas(CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T cell hybridomas. Nature 373:441–444

    Article  CAS  PubMed  Google Scholar 

  • Casciola-Rosen L et al (1996) Surface blebs on apoptotic cells are sites of enhanced procoagulant activity implications for coagulation events and antigenic spread in systemic lupus erythematosus. Proc Natl Acad Sci USA 93:1624–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casiano CA (1996) Selective cleavage of nuclear autoantigens during CD95 (Fas/APO-1)-mediated T cell apoptosis. J Exp Med 184:765–770

    Article  CAS  PubMed  Google Scholar 

  • Chan EK et al (1991) Molecular definition and sequence motifs of the 52-kD component of human SS-A/Ro autoantigen. J Clin Invest 87:68–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels TE (1986) Salivary histopathology in diagnosis of Sjogren’s syndrome. Scand J Rheumatol Suppl 61:36–43

    CAS  PubMed  Google Scholar 

  • Drappa J et al (1993) The Fas protein is expressed at high levels on CD4+CD8+ thymocytes and activated mature lymphocytes in normal mice but not in the lupus-prone strain, MRLlpr/lpr. Proc Natl Acad Sci USA 90:10340–10344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox RI et al (2000) Update in Sjögren’s syndrome. Curr Opin Rheumatol 12:391–398

    Article  CAS  PubMed  Google Scholar 

  • Groom J et al (2002) Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome. J Clin Invest 109:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haneji N et al (1997) Identification of α-fodrin as a candidate autoantigen in primary Sjogren’s syndrome. Science 276:604–607

    Article  CAS  PubMed  Google Scholar 

  • Hodes RJ (1995) Molecular alterations in the aging immune system. J Exp Med 182:1–3

    Article  CAS  PubMed  Google Scholar 

  • Huang S et al (1997) Apoptosis signaling pathway in T cells is composed of ICE/Ced-3 family proteases and MAP kinase kinase 6b. Immunity 6(6):739–749

    Article  CAS  PubMed  Google Scholar 

  • Humpherys-Beher MG et al (1999) The role of apoptosis in the initiation of the autoimmune response in Sjögren’s syndrome. Clin Exp Immunol 116:383–387

    Article  Google Scholar 

  • Ishimaru N et al (2000) Severe destructive autoimmune lesions with aging in murine Sjogren’s syndrome through Fas-mediated apoptosis. Am J Pathol 156:1557–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimaru N et al (2001) Possible role of organ-specific autoantigen for Fas ligand-mediated activation-induced cell death in murine Sjogren’s syndrome. J Immunol 167:6031–6037

    Article  CAS  PubMed  Google Scholar 

  • Ito M et al (1997) Rheumatic disease in an MRL strain of mice with a deficit in functional Fas ligand. Arthritis Rheum 40:1054–1063

    Article  CAS  PubMed  Google Scholar 

  • Kabelitz D et al (1994) Antigen-induced death of mature T lymphocytes: analysis by flow cytometry. Immunol Rev 142:157–174

    Article  CAS  PubMed  Google Scholar 

  • Kiecolt-Glaser JK et al (2003) Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc Natl Acad Sci USA 100:9090–9095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M et al (2004) Development of autoimmune arthritis with aging via bystander T cell activation in the mouse model for Sjogren’s syndrome. Arthritis Rheum 50:3974–3984

    Article  CAS  PubMed  Google Scholar 

  • Kothakota S et al (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298

    Article  CAS  PubMed  Google Scholar 

  • Kruize AA et al (1995) Diagnostic criteria and immunopathogenesis of Sjögren’s syndrome: implications for therapy. Immunol Today 16:557–559

    Article  CAS  PubMed  Google Scholar 

  • Lavie F et al (2004) Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjogren’s syndrome. J Pathol 202:496–502

    Article  CAS  PubMed  Google Scholar 

  • Ludgate M, Jasani B (1997) Apoptosis in autoimmune and non-autoimmune thyroid disease. J Pathol 182:123–124

    Article  CAS  PubMed  Google Scholar 

  • Mandrup-Poulsen T (2001) β-Cell apoptosis: stimuli and signaling. Diabetes 50:S58–S63

    Article  CAS  PubMed  Google Scholar 

  • Manoussakis MN, Moutsopoulos HM (2001) Sjögren’s syndrome: current concepts. Adv Intern Med 47:191–217

    CAS  PubMed  Google Scholar 

  • Masaki Y, Sugai S (2004) Lymphoproliferative disorders in Sjogren’s syndrome. Autoimmun Rev 3:175–182

    Article  PubMed  Google Scholar 

  • Miller RA (1996) The aging immune system: primers and prospectus. Science 273:70–74

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Carus ME et al (2000) Anti-SSA/Ro and anti-SSB/La autoantibodies bind the surface of apoptotic fetal cardiocytes and promote secretion of TNF-alpha by macrophages. J Immunol 165:5345–5351

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K et al (2005) Analysis of in vivo role of α-fodrin autoantigen in primary Sjogren’s syndrome. Am J Pathol 167:1051–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel JE et al (1988) Decreased proliferation, interleukin 2 synthesis, and interleukin 2 receptor expression are accompanied by decreased mRNA expression in phytohemagglutinin-stimulated cells from elderly donors. J Clin Invest 81:1096–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien BA et al (1997) Apoptosis is the mode of β-cell death responsible for the development of IDDM in the nonobese diabetic (NOD) mouse. Diabetes 46:750–757

    Article  PubMed  Google Scholar 

  • Patel YI, McHugh NJ (2000) Apoptosis-new clues to the pathogenesis of Sjogren’s syndrome? Rheumatology (Oxford) 39:119–121

    Article  CAS  Google Scholar 

  • Pawelec G et al (1995) Immunosenescence: ageing of the immune system. Immunol Today 16:420–422

    Article  CAS  PubMed  Google Scholar 

  • Pelfrey CM et al (1995) Two mechanisms of antigen-specific apoptosis of myelin basic protein (MBP)-specific T lymphocytes derived from multiple sclerosis patients and normal individuals. J Immunol 154:6191–6202

    CAS  PubMed  Google Scholar 

  • Price BE et al (1996) Antiphospholipid autoantibodies bind to apoptotic, but not viable, thymocytes in a β2-glycoprotein I-dependent manner. J Immunol 157:2201–2208

    CAS  PubMed  Google Scholar 

  • Proust JJ et al (1988) Age-related defect in signal transduction during lectin activation of murine T lymphocytes. J Immunol 139:1472–1478

    Google Scholar 

  • Rieux-Laucat F (1995) Mutation in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268:1347–1349

    Article  CAS  PubMed  Google Scholar 

  • Saegusa K et al (2002) Prevention and induction of autoimmune exocrinopathy is dependent on pathogenic autoantigen cleavage in murine Sjogren’s syndrome. J Immunol 169:1050–1057

    Article  CAS  PubMed  Google Scholar 

  • Straub RH et al (2003) The multiple facets of premature aging in rheumatoid arthritis. Arthritis Rheum 48:2713–2721

    Article  PubMed  Google Scholar 

  • Talal N et al (1967) Extrasalivary lymphoid abnormalities in Sjogren’s syndrome. Am J Med 43:50–65

    Article  CAS  PubMed  Google Scholar 

  • Utz PJ et al (1997) Proteins phosphorylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus. J Exp Med 185:843–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L et al (2004) Human lupus T cells resist inactivation and escape death by upregulating COX-2. Nat Med 10:411–415

    Article  CAS  PubMed  Google Scholar 

  • Yamada A et al (2015) Impaired expansion of regulatory T cells in a neonatal thymectomy-induced autoimmune mouse model. Am J Pathol 185:2886–2897

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Hayashi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hayashi, Y., Ishimaru, N. (2018). Autoimmunity: Aging Mouse Model for Autoimmune Diseases. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics