Skip to main content

Beneficial and Detrimental Manifestations of Age on CD8 + T Cell Memory to Respiratory Pathogens

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

Increasing age is associated with a decline in adaptive immunity and reduced immune responses. For example, aging is associated with poor vaccine responses to pulmonary pathogens such as influenza virus. While specific immune defects have clearly been defined in the naïve T cell pool of aged individuals, much less is known about the memory T cell pool. Accumulating data suggest that T cell memory generated in an aged individual has a reduced capacity to mediate recall responses due primarily to defects in the proliferative capacity of individual cells. These defective recall responses in the aged can be further compounded by the development of “holes” in the T cell repertoire due to a dwindling supply of naïve T cell precursors. However, it is possible that this deficit in naïve T cell repertoire is at least partly made up by “virtual memory” cells, which accumulate with age and can mediate protective immunity. In contrast, T cell memory generated in young individuals undergoes a variety of changes over time including both an increase in the proliferative capacity of individual memory T cells and a decrease in the overall efficacy of the recall response in the lung. Furthermore, the development of T cell clonal expansions with age can have a dramatic impact on the makeup of the memory T cell pool, thereby influencing the number of pathogen-specific T cells capable of participating in the recall response. Collectively, these changes appear to reflect the redistribution of memory T cell subsets within the memory T cell pool and the dysregulation of memory T cell homeostasis over time. This chapter outlines each of these processes and discusses their implications for vaccination against respiratory pathogens in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed R, Gray D (1996) Immunological memory and protective immunity: understanding their relation. Science 272:54–60

    Article  CAS  PubMed  Google Scholar 

  • Ahmed M, Lanzer KG, Yager EJ, Adams PS, Johnson LL, Blackman MA (2009) Clonal expansions and loss of receptor diversity in the naive CD8 T cell repertoire of aged mice. J Immunol 182:784–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akue AD, Lee JY, Jameson SC (2012) Derivation and maintenance of virtual memory CD8 T cells. J Immunol 188:2516–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson KG, Masopust D (2014) Editorial: pulmonary resident memory CD8 T cells: here today, gone tomorrow. J Leukoc Biol 95:199–201

    Article  PubMed  CAS  Google Scholar 

  • Baars PA, Sierro S, Arens R, Tesselaar K, Hooibrink B, Klenerman P, van Lier RA (2005) Properties of murine (CD8+)CD27- T cells. Eur J Immunol 35:3131–3141

    Article  CAS  PubMed  Google Scholar 

  • Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687

    Article  CAS  PubMed  Google Scholar 

  • Becker TC, Coley SM, Wherry EJ, Ahmed R (2005) Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J Immunol 174:1269–1273

    Article  CAS  PubMed  Google Scholar 

  • Belshe RB (1998) Influenza as a zoonosis: how likely is a pandemic? [comment]. Lancet 351:460–461

    Article  CAS  PubMed  Google Scholar 

  • Belz GT, Stevenson PG, Doherty PC (2000) Contemporary analysis of MHC-related immunodominance hierarchies in the CD8+ T cell response to influenza A viruses. J Immunol 165:2404–2409

    Article  CAS  PubMed  Google Scholar 

  • Bender BS, Small PA Jr (1993) Heterotypic immune mice lose protection against influenza virus infection with senescence. J Infect Dis 168:873–880

    Article  CAS  PubMed  Google Scholar 

  • Bender BS, Johnson MP, Small PA (1991) Influenza in senescent mice: impaired cytotoxic T-lymphocyte activity is correlated with prolonged infection. Immunology 72:514–519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berenzon D, Schwenk RJ, Letellier L, Guebre-Xabier M, Williams J, Krzych U (2003) Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells. J Immunol 171:2024–2034

    Article  CAS  PubMed  Google Scholar 

  • Bjorkdahl O, Barber KA, Brett SJ, Daly MG, Plumpton C, Elshourbagy NA, Tite JP, Thomsen LL (2003) Characterization of CC-chemokine receptor 7 expression on murine T cells in lymphoid tissues. Immunology 110:170–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd SD, Liu Y, Wang C, Martin V, Dunn-Walters DK (2013) Human lymphocyte repertoires in ageing. Curr Opin Immunol 25:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB, Bolotin DA, Lukyanov S, Bogdanova EA, Mamedov IZ, Lebedev YB, Chudakov DM (2014) Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol 192:2689–2698

    Article  CAS  PubMed  Google Scholar 

  • Britanova OV, Shugay M, Merzlyak EM, Staroverov DB, Putintseva EV, Turchaninova MA, Mamedov IZ, Pogorelyy MV, Bolotin DA, Izraelson M, Davydov AN, Egorov ES, Kasatskaya SA, Rebrikov DV, Lukyanov S, Chudakov DM (2016) Dynamics of individual T cell repertoires: from cord blood to centenarians. J Immunol 196:5005–5013

    Article  CAS  PubMed  Google Scholar 

  • Callahan JE, Kappler JW, Marrack P (1993) Unexpected expansions of CD8-bearing cells in old mice. J Immunol 151:6657–6669

    CAS  PubMed  Google Scholar 

  • Carbone FR (2015) Tissue-resident memory T cells and fixed immune surveillance in nonlymphoid organs. J Immunol 195:17–22

    Article  CAS  PubMed  Google Scholar 

  • Carbone FR, Mackay LK, Heath WR, Gebhardt T (2013) Distinct resident and recirculating memory T cell subsets in non-lymphoid tissues. Curr Opin Immunol 25:329–333

    Article  CAS  PubMed  Google Scholar 

  • Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, Beura LK, Lucas PJ, Artis D, Wherry EJ, Hogquist K, Vezys V, Masopust D (2012) Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J Immunol 188:4866–4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cauley LS, Lefrancois L (2013) Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol 6:14–23

    Article  CAS  PubMed  Google Scholar 

  • Cauley LS, Cookenham T, Miller TB, Adams PS, Vignali KM, Vignali DA, Woodland DL (2002) Cutting edge: virus-specific CD4+ memory T cells in nonlymphoid tissues express a highly activated phenotype. J Immunol 169:6655–6658

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Zengel JR, Suguitan AL Jr, Xu Q, Wang W, Lin J, Jin H (2013) Evaluation of the humoral and cellular immune responses elicited by the live attenuated and inactivated influenza vaccines and their roles in heterologous protection in ferrets. J Infect Dis 208:594–602

    Article  CAS  PubMed  Google Scholar 

  • Chiu BC, Martin BE, Stolberg VR, Chensue SW (2013) Cutting edge: central memory CD8 T cells in aged mice are virtual memory cells. J Immunol 191:5793–5796

    Article  CAS  PubMed  Google Scholar 

  • Clambey ET, van Dyk LF, Kappler JW, Marrack P (2005) Non-malignant clonal expansions of CD8+ memory T cells in aged individuals. Immunol Rev 205:170–189

    Article  CAS  PubMed  Google Scholar 

  • Clambey ET, White J, Kappler JW, Marrack P (2008) Identification of two major types of age-associated CD8 clonal expansions with highly divergent properties. Proc Natl Acad Sci U S A 105:12997–13002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor LM, Kohlmeier JE, Ryan L, Roberts AD, Cookenham T, Blackman MA, Woodland DL (2012) Early dysregulation of the memory CD8+ T cell repertoire leads to compromised immune responses to secondary viral infection in the aged. Immun Ageing 9:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft M (2003) Costimulation of T cells by OX40, 4-1BB, and CD27. Cytokine Growth Factor Rev 14:265–273

    Article  CAS  PubMed  Google Scholar 

  • Deckhut AM, Allan W, McMickle A, Eichelberger M, Blackman MA, Doherty PC, Woodland DL (1993) Prominent usage of Vβ8.3 T cells in the H-2Db-restricted response to an influenza A virus nucleoprotein epitope. J Immunol 151:2658–2666

    CAS  PubMed  Google Scholar 

  • Dutton RW, Bradley LM, Swain SL (1998) T cell memory. Annu Rev Immunol 16:201–223

    Article  CAS  PubMed  Google Scholar 

  • Dutton RW, Swain SL, Bradley LM (1999) The generation and maintenance of memory T and B cells. Immunol Today 20:291–293

    Article  CAS  PubMed  Google Scholar 

  • Effros RB, Walford RL (1983) Diminished T-cell response to influenza virus in aged mice. Immunology 49:387–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Effros RB, Cai Z, Linton PJ (2003) CD8 T cells and aging. Crit Rev Immunol 23:45–64

    Article  CAS  PubMed  Google Scholar 

  • Ely KH, Roberts AD, Woodland DL (2003) Cutting edge: effector memory CD8+ T cells in the lung airways retain the potential to mediate recall responses. J Immunol 171:3338–3342

    Article  CAS  PubMed  Google Scholar 

  • Ely KH, Cookenham T, Roberts AD, Woodland DL (2006) Memory T cell populations in the lung airways are maintained by continual recruitment. J Immunol 176:537–543

    Article  CAS  PubMed  Google Scholar 

  • Ely KH, Ahmed M, Kohlmeier JE, Roberts AD, Wittmer ST, Blackman MA, Woodland DL (2007a) Antigen-specific CD8+ T cell clonal expansions develop from memory T cell pools established by acute respiratory virus infections. J Immunol 179:3535–3542

    Article  CAS  PubMed  Google Scholar 

  • Ely KH, Roberts AD, Kohlmeier JE, Blackman MA, Woodland DL (2007b) Aging and CD8+ T cell immunity to respiratory virus infections. Exp Gerontol 42:427–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagiolo U, Amadori A, Cozzi E, Bendo R, Lama M, Douglas A, Palu G (1993) Humoral and cellular immune response to influenza virus vaccination in aged humans. Aging (Milano) 5:451–458

    CAS  Google Scholar 

  • Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, Casti A, Franceschi C, Passeri M, Sansoni P (2000) Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 95:2860–2868

    CAS  PubMed  Google Scholar 

  • Flynn KJ, Belz GT, Altman JD, Ahmed R, Woodland DL, Doherty PC (1998) Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8:683–691

    Article  CAS  PubMed  Google Scholar 

  • Frank AL, Taber LH, Wells JM (1983) Individuals infected with two subtypes of influenza A virus in the same season. J Infect Dis 147:120–124

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt T, Mackay LK (2012) Local immunity by tissue-resident CD8(+) memory T cells. Front Immunol 3:340

    Article  PubMed  PubMed Central  Google Scholar 

  • Glezen WP (1982) Serious morbidity and mortality associated with influenza epidemics. Epidemiol Rev 4:25–44

    Article  CAS  PubMed  Google Scholar 

  • Goronzy JJ, Lee WW, Weyand CM (2007) Aging and T-cell diversity. Exp Gerontol 42:400–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goronzy JJ, Fang F, Cavanagh MM, Qi Q, Weyand CM (2015) Naive T cell maintenance and function in human aging. J Immunol 194:4073–4080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubareva LV, McCullers JA, Bethell RC, Webster RG (1998) Characterization of influenza A/HongKong/156/97 (H5N1) virus in a mouse model and protective effect of zanamivir on H5N1 infection in mice. J Infect Dis 178:1592–1596

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Bi R, Su K, Yel L, Chiplunkar S, Gollapudi S (2004) Characterization of naive, memory and effector CD8+ T cells: effect of age. Exp Gerontol. Fourth International Conference on the Basic Biology and Clinical Impact of Immunosenescence 39:545–550

    Article  CAS  PubMed  Google Scholar 

  • Haluszczak C, Akue AD, Hamilton SE, Johnson LD, Pujanauski L, Teodorovic L, Jameson SC, Kedl RM (2009) The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J Exp Med 206:435–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK (2003) Duration of antiviral immunity after smallpox vaccination. Nat Med 9:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Haq K, McElhaney JE (2014) Immunosenescence: influenza vaccination and the elderly. Curr Opin Immunol 29:38–42

    Article  CAS  PubMed  Google Scholar 

  • Harris NL, Watt V, Ronchese F, Le Gros G (2002) Differential T cell function and fate in lymph node and nonlymphoid tissues. J Exp Med 195:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes L (2005) The effect of aging on cognate function and development of immune memory. Curr Opin Immunol Aging Immune Syst/Immunogenet/Transplant 17:476–479

    Article  CAS  Google Scholar 

  • Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL (2003) CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci U S A 100:15053–15058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes L, Cambier J, Fulder R (2005) Aging and immune function. Summary of a workshop held at Trudeau Institute, Saranac Lake, NY. Mech Ageing Dev 126:822–825

    Article  CAS  PubMed  Google Scholar 

  • Hengel RL, Thaker V, Pavlick MV, Metcalf JA, Dennis G Jr, Yang J, Lempicki RA, Sereti I, Lane HC (2003) Cutting edge: L-selectin (CD62L) expression distinguishes small resting memory CD4+ T cells that preferentially respond to recall antigen. J Immunol 170:28–32

    Article  CAS  PubMed  Google Scholar 

  • Hikono H, Kohlmeier JE, Ely KH, Scott I, Roberts AD, Blackman MA, Woodland DL (2006) T-cell memory and recall responses to respiratory virus infections. Immunol Rev 211:119–132

    Article  CAS  PubMed  Google Scholar 

  • Hikono H, Kohlmeier JE, Takamura S, Wittmer ST, Roberts AD, Woodland DL (2007) Activation phenotype, rather than central- or effector-memory phenotype, predicts the recall efficacy of memory CD8+ T cells. J Exp Med 204:1625–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hingorani R, Choi IH, Akolkar P, Gulwani-Akolkar B, Pergolizzi R, Silver J, Gregersen PK (1993) Clonal predominance of T cell receptors within the CD8+ CD45RO+ subset in normal human subjects. J Immunol 151:5762–5769

    CAS  PubMed  Google Scholar 

  • Hogan RJ, Usherwood EJ, Zhong W, Roberts AD, Dutton RW, Harmsen AG, Woodland DL (2001a) Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. J Immunol 166:1813–1822

    Article  CAS  PubMed  Google Scholar 

  • Hogan RJ, Zhong W, Usherwood EJ, Cookenham T, Roberts AD, Woodland DL (2001b) Protection from respiratory virus infections can be mediated by antigen-specific CD4+ T cells that persist in the lungs. J Exp Med 193:981–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou S, Doherty PC, Zijlstra M, Jaenisch R, Katz JM (1992) Delayed clearance of Sendai virus in mice lacking class I MHC- restricted CD8+ T cells. J Immunol 149:1319–1325

    CAS  PubMed  Google Scholar 

  • Jelley-Gibbs DM, Brown DM, Dibble JP, Haynes L, Eaton SM, Swain SL (2005) Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. J Exp Med 202:697–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AT, Federsppiel B, Ellies LG, Williams MJ, Burgener R, Duronio V, Smith CA, Takei F, Ziltener HJ (1994) Characterization of the activation-associated isoform of CD43 on murine T lymphocytes. J Immunol 153:3426–3439

    CAS  PubMed  Google Scholar 

  • Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4:1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Kapasi ZF, Murali-Krishna K, McRae ML, Ahmed R (2002) Defective generation but normal maintenance of memory T cells in old mice. Eur J Immunol 32:1567–1573

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, Nayak L, Moss PA (2002) Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 169:1984–1992

    Article  CAS  PubMed  Google Scholar 

  • Klonowski KD, Williams KJ, Marzo AL, Blair DA, Lingenheld EG, Lefrancois L (2004) Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20:551–562

    Article  CAS  PubMed  Google Scholar 

  • Koch S, Solana R, Dela Rosa O, Pawelec G (2006) Human cytomegalovirus infection and T cell immunosenescence: a mini review. Mech Ageing Dev 127:538–543

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeier JE, Connor LM, Roberts AD, Cookenham T, Martin K, Woodland DL (2010a) Nonmalignant clonal expansions of memory CD8+ T cells that arise with age vary in their capacity to mount recall responses to infection. J Immunol 185:3456–3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlmeier JE, Cookenham T, Roberts AD, Miller SC, Woodland DL (2010b) Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge. Immunity 33:96–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovaiou RD, Grubeck-Loebenstein B (2006) Age-associated changes within CD4+ T cells. Immunol Lett 107:8–14

    Article  CAS  PubMed  Google Scholar 

  • Lanzer KG, Johnson LL, Woodland DL, Blackman MA (2014) Impact of ageing on the response and repertoire of influenza virus-specific CD4 T cells. Immun Ageing: I & A 11:9

    Article  CAS  Google Scholar 

  • Lee JY, Hamilton SE, Akue AD, Hogquist KA, Jameson SC (2013) Virtual memory CD8 T cells display unique functional properties. Proc Natl Acad Sci U S A 110:13498–13503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefrancois L, Masopust D (2002) T cell immunity in lymphoid and non-lymphoid tissues. Curr Opin Immunol 14:503–508

    Article  CAS  PubMed  Google Scholar 

  • LeMaoult J, Messaoudi I, Manavalan JS, Potvin H, Nikolich-Zugich D, Dyall R, Szabo P, Weksler ME, Nikolich-Zugich J (2000) Age-related dysregulation in CD8 T cell homeostasis: kinetics of a diversity loss. J Immunol 165:2367–2373

    Article  CAS  PubMed  Google Scholar 

  • Lerner A, Yamada T, Miller RA (1989) Pgp-1hi T lymphocytes accumulate with age in mice and respond poorly to concanavalin A. Eur J Immunol 19:977–982

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhi W, Wareski P, Weng N-p (2005) IL-15 activates telomerase and minimizes telomere loss and may preserve the replicative life span of memory CD8+ T cells in vitro. J Immunol 174:4019–4024

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Mozdzanowska K, Palladino G, Gerhard W (1994) Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity. J Immunol 152:1653–1661

    CAS  PubMed  Google Scholar 

  • Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139

    Article  CAS  PubMed  Google Scholar 

  • Linton P-J, Li SP, Zhang Y, Bautista B, Huynh Q, Trinh T (2005) Intrinsic versus environmental influences on T-cell responses in aging. Immunol Rev 205:207–219

    Article  CAS  PubMed  Google Scholar 

  • Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD (2009) Thymic involution and immune reconstitution. Trends Immunol 30:366–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall DR, Turner SJ, Belz GT, Wingo S, Andreansky S, Sangster MY, Riberdy JM, Liu T, Tan M, Doherty PC (2001) Measuring the diaspora for virus-specific CD8+ T cells. Proc Natl Acad Sci U S A 98:6313–6318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzo AL, Klonowski KD, Le Bon A, Borrow P, Tough DF, Lefrancois L (2005) Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat Immunol 6:793–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason D (1998) A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 19:395–404

    Article  CAS  PubMed  Google Scholar 

  • Masopust D, Vezys V, Marzo AL, Lefrancois L (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291:2413–2417

    Article  CAS  PubMed  Google Scholar 

  • McElhaney JE, Xie D, Hager WD, Barry MB, Wang Y, Kleppinger A, Ewen C, Kane KP, Bleackley RC (2006) T cell responses are better correlates of vaccine protection in the elderly. J Immunol 176:6333–6339

    Article  CAS  PubMed  Google Scholar 

  • McElhaney JE, Coler RN, Baldwin SL (2013) Immunologic correlates of protection and potential role for adjuvants to improve influenza vaccines in older adults. Expert Rev Vaccines 12:759–766

    Article  CAS  PubMed  Google Scholar 

  • McMaster SR, Wilson JJ, Wang H, Kohlmeier JE (2015) Airway-resident memory CD8 T cells provide antigen-specific protection against respiratory virus challenge through rapid IFN-gamma production. J Immunol 195:203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMichael A (1994) Cytotoxic T lymphocytes specific for influenza virus. Curr Top Microbiol Immunol 189:75–91

    CAS  PubMed  Google Scholar 

  • Messaoudi I, Lemaoult J, Guevara-Patino JA, Metzner BM, Nikolich-Zugich J (2004) Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. J Exp Med 200:1347–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messaoudi I, Warner J, Nikolich-Zugich J (2006) Age-related CD8+ T cell clonal expansions express elevated levels of CD122 and CD127 and display defects in perceiving homeostatic signals. J Immunol 177:2784–2792

    Article  CAS  PubMed  Google Scholar 

  • Miller RA (1991) Aging and immune function. Int Rev Cytol 124:187–215

    Article  CAS  PubMed  Google Scholar 

  • Miller RA (1996) The aging immune system: primer and prospectus. Science 273:70–74

    Article  CAS  PubMed  Google Scholar 

  • Mosley RL, Koker MM, Miller RA (1998) Idiosyncratic alterations of TCR size distributions affecting both CD4 and CD8 T cell subsets in aging mice. Cell Immunol 189:10–18

    Article  CAS  PubMed  Google Scholar 

  • Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky J, Ahmed R (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8:177–187

    Article  CAS  PubMed  Google Scholar 

  • Murasko DM, Bernstein ED, Gardner EM, Gross P, Munk G, Dran S, Abrutyn E (2002) Role of humoral and cell-mediated immunity in protection from influenza disease after immunization of healthy elderly. Exp Gerontol 37:427–439

    Article  CAS  PubMed  Google Scholar 

  • Murphy BR, Webster RG (1996) Orthomyxoviruses. In: Fields BN (ed) Fields virology. Lippincott-Raven Publishers, Philadelphia, pp 1397–1445

    Google Scholar 

  • Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, Witkowski J, Fulbright J, Weyand CM, Goronzy JJ (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174:7446–7452

    Article  CAS  PubMed  Google Scholar 

  • Ndifon W, Dushoff J (2016) The Hayflick limit may determine the effective clonal diversity of naive T cells. J Immunol 196:4999–5004

    Article  CAS  PubMed  Google Scholar 

  • Nikolich-Zugich J (2005) T cell aging: naive but not young. J Exp Med 201:837–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolich-Zugich J, Slifka MK, Messaoudi I (2004) The many important facets of T-cell repertoire diversity. Nat Rev Immunol 4:123–132

    Article  CAS  PubMed  Google Scholar 

  • Oehen S, Brduscha-Riem K (1998) Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J Immunol 161:5338–5346

    CAS  PubMed  Google Scholar 

  • Olson JA, McDonald-Hyman C, Jameson SC, Hamilton SE (2013) Effector-like CD8(+) T cells in the memory population mediate potent protective immunity. Immunity 38:1250–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onami TM, Harrington LE, Williams MA, Galvan M, Larsen CP, Pearson TC, Manjunath N, Baum LG, Pearce BD, Ahmed R (2002) Dynamic regulation of T cell immunity by CD43. J Immunol 168:6022–6031

    Article  CAS  PubMed  Google Scholar 

  • Pinner RW, Teutsch SM, Simonsen L, Klug LA, Graber JM, Clarke MJ, Berkelman RL (1996) Trends in infectious diseases mortality in the Unites States [see comments]. JAMA 275:189–193

    Article  CAS  PubMed  Google Scholar 

  • Po JL, Gardner EM, Anaraki F, Katsikis PD, Murasko DM (2002) Age-associated decrease in virus-specific CD8+ T lymphocytes during primary influenza infection. Mech Ageing Dev 123:1167–1181

    Article  CAS  PubMed  Google Scholar 

  • Posnett DN, Sinha R, Kabak S, Russo C (1994) Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy”. J Exp Med 179:609–618

    Article  CAS  PubMed  Google Scholar 

  • Posnett DN, Yarilin D, Valiando JR, Li F, Liew FY, Weksler ME, Szabo P (2003) Oligoclonal expansions of antigen-specific CD8+ T cells in aged mice. Ann N Y Acad Sci 987:274–279

    Article  CAS  PubMed  Google Scholar 

  • Pulko V, Davies JS, Martinez C, Lanteri MC, Busch MP, Diamond MS, Knox K, Bush EC, Sims PA, Sinari S, Billheimer D, Haddad EK, Murray KO, Wertheimer AM, Nikolich-Zugich J (2016) Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat Immunol 17:966–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, Olshen RA, Weyand CM, Boyd SD, Goronzy JJ (2014a) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci U S A 111:13139–13144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Q, Zhang DW, Weyand CM, Goronzy JJ (2014b) Mechanisms shaping the naive T cell repertoire in the elderly – thymic involution or peripheral homeostatic proliferation? Exp Gerontol 54:71–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK (2001) Visualizing the generation of memory CD4 T cells in the whole body. Nature 410:101–105

    Article  CAS  PubMed  Google Scholar 

  • Renkema KR, Li G, Wu A, Smithey MJ, Nikolich-Zugich J (2014) Two separate defects affecting true naive or virtual memory T cell precursors combine to reduce naive T cell responses with aging. J Immunol 192:151–159

    Article  CAS  PubMed  Google Scholar 

  • Rimmelzwaan GF, Osterhaus AD (1995) Cytotoxic T lymphocyte memory: role in cross-protective immunity against influenza? Vaccine 13:703–705

    Article  CAS  PubMed  Google Scholar 

  • Roberts AD, Woodland DL (2004) Cutting edge: effector memory CD8+ T cells play a prominent role in recall responses to secondary viral infection in the lung. J Immunol 172:6533–6537

    Article  CAS  PubMed  Google Scholar 

  • Roberts AD, Ely KH, Woodland DL (2005) Differential contributions of central and effector memory T cells to recall responses. J Exp Med 202:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  CAS  PubMed  Google Scholar 

  • Schenkel JM, Masopust D (2014) Tissue-resident memory T cells. Immunity 41:886–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D (2014a) T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346:98–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenkel JM, Fraser KA, Masopust D (2014b) Cutting edge: resident memory CD8 T cells occupy frontline niches in secondary lymphoid organs. J Immunol 192:2961–2964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulman JL (1970) Effects of immunity on transmission of influenza: experimental studies. Prog Med Virol 12:128–160

    CAS  PubMed  Google Scholar 

  • Schwab R, Szabo P, Manavalan JS, Weksler ME, Posnett DN, Pannetier C, Kourilsky P, Even J (1997) Expanded CD4+ and CD8+ T cell clones in elderly humans. J Immunol 158:4493–4499

    CAS  PubMed  Google Scholar 

  • Seder RA, Ahmed R (2003) Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol 4:835–842

    Article  CAS  PubMed  Google Scholar 

  • Selin LK, Welsh RM (2004) Plasticity of T cell memory responses to viruses. Immunity 20:5–16

    Article  CAS  PubMed  Google Scholar 

  • Selin LK, Cornberg M, Brehm MA, Kim SK, Calcagno C, Ghersi D, Puzone R, Celada F, Welsh RM (2004) CD8 memory T cells: cross-reactivity and heterologous immunity. Semin Immunol 16:335–347

    Article  CAS  PubMed  Google Scholar 

  • Selin LK, Brehm MA, Naumov YN, Cornberg M, Kim S-K, Clute SC, Welsh RM (2006) Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol Rev 211:164–181

    Article  CAS  PubMed  Google Scholar 

  • Sempowski GD, Gooding ME, Liao HX, Le PT, Haynes BF (2002) T cell receptor excision circle assessment of thymopoiesis in aging mice. Mol Immunol 38:841–848

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Iwasaki A (2013) Tissue-resident memory T cells. Immunol Rev 255:165–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shortridge KF, Zhou NN, Guan Y, Gao P, Ito T, Kawaoka Y, Kodihalli S, Krauss S, Markwell D, Murti KG, Norwood M, Senne D, Sims L, Takada A, Webster RG (1998) Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 252:331–342

    Article  CAS  PubMed  Google Scholar 

  • Sonoguchi T, Naito H, Hara M, Takeuchi Y, Fukumi H (1985) Cross-subtype protection in humans during sequential, overlapping, and/or concurrent epidemics caused by H3N2 and H1N1 influenza viruses. J Infect Dis 151:81–88

    Article  CAS  PubMed  Google Scholar 

  • Sprent J (1997) Immunological memory. Curr Opin Immunol 9:371–379

    Article  CAS  PubMed  Google Scholar 

  • Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J, Hemphill M, Rowe T, Shaw M, Xu X, Fukuda K, Cox N (1998) Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness [see comments]. Science 279:393–396

    Article  CAS  PubMed  Google Scholar 

  • Townsend AR, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ (1986) The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44:959–968

    Article  CAS  PubMed  Google Scholar 

  • Tripp RA, Hou S, Doherty PC (1995) Temporal loss of the activated L-selectin-low phenotype for virus- specific CD8+ memory T cells. J Immunol 154:5870–5875

    CAS  PubMed  Google Scholar 

  • Turner DL, Bickham KL, Thome JJ, Kim CY, D'Ovidio F, Wherry EJ, Farber DL (2014) Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol 7:501–510

    Article  CAS  PubMed  Google Scholar 

  • Unsoeld H, Krautwald S, Voehringer D, Kunzendorf U, Pircher H (2002) Cutting edge: CCR7+ and CCR7- memory T cells do not differ in immediate effector cell function. J Immunol 169:638–641

    Article  CAS  PubMed  Google Scholar 

  • Usherwood EJ, Hogan RJ, Crowther G, Surman SL, Hogg TL, Altman JD, Woodland DL (1999a) Functionally heterogeneous CD8+ T-cell memory is induced by Sendai virus infection of mice. J Virol 73:7278–7286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usherwood EJ, Hogg TL, Woodland DL (1999b) Enumeration of antigen-presenting cells in mice infected with Sendai virus. J Immunol 162:3350–3355

    CAS  PubMed  Google Scholar 

  • Van Kaer L (2015) Innate and virtual memory T cells in man. Eur J Immunol 45:1916–1920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voehringer D, Blaser C, Brawand P, Raulet DH, Hanke T, Pircher H (2001) Viral infections induce abundant numbers of senescent CD8 T cells. J Immunol 167:4838–4843

    Article  CAS  PubMed  Google Scholar 

  • Wakim LM, Woodward-Davis A, Bevan MJ (2010) Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc Natl Acad Sci U S A 107:17872–17879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JT, Cross EW, Burchill MA, Danhorn T, McCarter MD, Rosen HR, O'Connor B, Kedl RM (2016) Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat Commun 7:11291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wick G, Jansen-Durr P, Berger P, Blasko I, Grubeck-Loebenstein B (2000) Diseases of aging. Vaccine 18:1567–1583

    Article  CAS  PubMed  Google Scholar 

  • Woodland DL (2003) Cell-mediated immunity to respiratory virus infections. Curr Opin Immunol 15:430–435

    Article  CAS  PubMed  Google Scholar 

  • Woodland DL, Blackman MA (2006) Immunity and age: living in the past? Trends Immunol 27:303–307

    Article  CAS  PubMed  Google Scholar 

  • Woodland DL, Kohlmeier JE (2009) Migration, maintenance and recall of memory T cells in peripheral tissues. Nat Rev Immunol 9:153–161

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Hu Y, Lee YT, Bouchard KR, Benechet A, Khanna K, Cauley LS (2014) Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol 95:215–224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yager EJ, Ahmed M, Lanzer K, Johnson LL, Woodland DL, Blackman MA (2008a) Influence of aging on T cell repertoire and cellular immunity to viral infections- challenges for effective influenza vaccines for the elderly. In: Tripp RA (ed), In Immunobiology of Influenza Virus infection: approaches for an emerging zoonotic disease, Research Signpost. Trivandrum, India, p 59–72

    Google Scholar 

  • Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA (2008b) Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med 205:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yewdell JW, Bennink JR, Smith GL, Moss B (1985) Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 82:1785–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R (1998) Viral immune evasion due to persistence of activated T cells without effector function [see comments]. J Exp Med 188:2205–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zammit DJ, Turner DL, Klonowski KD, Lefrancois L, Cauley LS (2006) Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity 24:439–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Fujii H, Kishimoto H, LeRoy E, Surh CD, Sprent J (2002) Aging leads to disturbed homeostasis of memory phenotype CD8+ cells. J Exp Med 195:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong W, Reinherz EL (2004) In vivo selection of a TCR Vbeta repertoire directed against an immunodominant influenza virus CTL epitope. Int Immunol 16:1549–1559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH (AG021600, AG029010, AI067967, AI049823, AI071478) and the Trudeau Institute. The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia A. Blackman .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Kohlmeier, J.E. et al. (2018). Beneficial and Detrimental Manifestations of Age on CD8 + T Cell Memory to Respiratory Pathogens. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_49-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_49-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics