Skip to main content

Aging and Malignant Hemopathies: A Complex Multistep Process

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

The probability of developing cancer, primarily malignant hemopathies, increases with age. This complex relationship between cancer and aging has been extensively studied; cellular senescence, a protective mechanism in response to DNA damage, can induce permanent growth arrest and resistance to apoptosis. Chronological age also favors the accumulation of genetic and epigenetic changes that are important contributing factors in the complex pathogenesis of cancer. Other age-related mechanisms such as impairment of cancer prevention and clonal restriction of hematopoietic stem cells also lead to the development of cancer. However, a full understanding of the process of aging is far from complete with many open questions currently under investigation. This review will focus on the complex multistep interplay between aging and a higher incidence of malignant hemopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • André T, Meuleman N, Stamatopoulos B, De Bruyn C, Pieters K, Bron D, Lagneaux L (2013) Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells. PLoS One 8(3):e59756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • André T, Najar M, Stamatopoulos B, Pieters K, Pradier O, Bron D, Meuleman N, Lagneaux L (2015) Immune impairments in multiple myeloma bone marrow mesenchymal stromal cells. Cancer Immunol Immunother 64(2):213–224

    Article  CAS  PubMed  Google Scholar 

  • Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, Rossi DJ (2013) Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12(4):413–425

    Article  CAS  PubMed  Google Scholar 

  • Ben-Porath I, Weinberg RA (2004) When cells get stressed: an integrative view of cellular senescence. J Clin Invest 113:8–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976

    Article  CAS  PubMed  Google Scholar 

  • Bron D, Soubeyran P, Fulop T (2016) Innovative approach to older patients with malignant hemopathies. Haematologica 101(6):1–3

    Google Scholar 

  • Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96:4240–4245

    Article  CAS  PubMed  Google Scholar 

  • Capparelli C, Guido C, Whitaker-Menezes D et al (2012) Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle 11(12):2285–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, Bock C, Vasanthakumar A, Gu H, Xi Y, Liang S, Lu Y, Darlington GJ, Meissner A, Issa JP, Godley LA, Li W, Goodell MA (2011) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44(1):23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challen GA, Sun D, Mayle A, Jeong M, Luo M, Rodriguez B, Mallaney C, Celik H, Yang L, Xia Z, Cullen S, Berg J, Zheng Y, Darlington GJ, Li W, Goodell MA (2014) Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15(3):350–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5(8):e201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W-H, Muftic D, Muftuoglu M et al (2008) WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol Biol Cell 19:3923–3933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppé J-P, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  CAS  PubMed  Google Scholar 

  • Djeghloul D, Kuranda K, Kuzniak I, Barbieri D, Naguibneva I, Choisy C, Bories JC, Dosquet C, Pla M, Vanneaux V, Socie G, Porteu F, Garrick D, Goodhardt M (2016) Age-associated decrease of the histone methyltransferase SUV39H1 in HSC perturbs heterochromatin and B lymphoid differentiation. Stem Cell Rep 6(6):970–984

    Article  CAS  Google Scholar 

  • Donehower LA (2002) Does p53 affect organismal aging? J Cell Physiol 192:23–33

    Article  CAS  PubMed  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    Article  CAS  PubMed  Google Scholar 

  • Fenton M, Barker S, Kurz DJ et al (2001) Cellular senescence after single and repeated balloon catheter denudations of rabbit carotid arteries. Arterioscler Thromb Vasc Biol 21:220–226

    Article  CAS  PubMed  Google Scholar 

  • Florian MC, Dorr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, Filippi MD, Hasenberg A, Gunzer M, Scharffetter-Kochanek K, Zheng Y, Geiger H (2012a) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10(5):520–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florian MC, Dörr K, Niebel A et al (2012b) CDC42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10:520–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulop T, Larbi A, Pawelec G (2013) Human T cell aging and the impact of persistent viral infections. Front Immunol 4:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Cao I, Garcia-Cao M, Martin-Caballero J et al (2002) “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 21:6225–6235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Cao I, Song MS, Hobbs RM et al (2012) Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell 149:49–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger H, de Haan G, Florian MC et al (2013) The ageing hematopoietic stem cell compartment. Nat Rev Immunol 13:376–389

    Article  CAS  PubMed  Google Scholar 

  • Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, Chambert K, Mick E, Neale BM, Fromer M, Purcell SM, Svantesson O, Landen M, Hoglund M, Lehmann S, Gabriel SB, Moran JL, Lander ES, Sullivan PF, Sklar P, Gronberg H, Hultman CM, McCarroll SA (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371(26):2477–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodhardt M Garrick D, Dang Luan, Salaroli A, D Bron (2018) Hematopietic stem cell aging and malignant hemopathies. Geriatric Oncology. Exterman M (ed) (in press)

    Google Scholar 

  • Gosselin K, Martien S, Pourtier A et al (2009) Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res 69:7917–7925

    Article  CAS  PubMed  Google Scholar 

  • Haber DA (1997) Splicing into senescence: the curious case of p16 and p19ARF. Cell 91:555–558

    Article  CAS  PubMed  Google Scholar 

  • Herbig U, Ferreira M, Condel L et al (2006) Cellular senescence in aging primates. Science 311:1257

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo I, Herrera-Merchan A, Ligos JM, Carramolino L, Nunez J, Martinez F, Dominguez O, Torres M, Gonzalez S (2012) Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. Cell Stem Cell 11(5):649–662

    Article  CAS  PubMed  Google Scholar 

  • Issa J-P (2014) Aging and epigenetic drift: a vicious cycle. J Clin Invest 124:24–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal S, Fontanillas P, Flannick J et al (2014a) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498. Age related clonal hematopoiesis is frequent and associated with an increased risk of hematological cancer

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, Higgins JM, Moltchanov V, Kuo FC, Kluk MJ, Henderson B, Kinnunen L, Koistinen HA, Ladenvall C, Getz G, Correa A, Banahan BF, Gabriel S, Kathiresan S, Stringham HM, McCarthy MI, Boehnke M, Tuomilehto J, Haiman C, Groop L, Atzmon G, Wilson JG, Neuberg D, Altshuler D, Ebert BL (2014b) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371(26):2488–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeyapalan JC, Sedivy JM (2008) Cellular senescence and organismal aging. Mech Ageing Dev 129:467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeyapalan JC, Ferreira M, Sedivy JM et al (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128:36–44

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Miller S, Hyland C, Kauppi M, Lebois M, Di Rago L, Metcalf D, Kinkel SA, Josefsson EC, Blewitt ME, Majewski IJ, Alexander WS (2015) Polycomb repressive complex 2 component Suz12 is required for hematopoietic stem cell function and lymphopoiesis. Blood 126(2): 167–175

    Article  CAS  PubMed  Google Scholar 

  • Maier B, Gluba W, Bernier B et al (2004) Modulation of mammalian life span by the short isoform of p53. Genes Dev 18:306–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews C, Gorenne I, Scott S et al (2006) Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 99:156–164

    Article  CAS  PubMed  Google Scholar 

  • Minamino T, Miyauchi H, Yoshida T et al (2002) Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105:1541–1544

    Article  CAS  PubMed  Google Scholar 

  • Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin RD, Johnson NA, Severson TM et al (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42:181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muto T, Okazaki I, Yamada S et al (2006) Negative regulation of activation-induced cytidine deaminase in B cells. Proc Natl Acad Sci USA 103:2752–2757

    Article  CAS  PubMed  Google Scholar 

  • Nicolai S, Rossi A, Di Daniele N et al (2015) DNA repair and aging: the impact of p53 family. Aging 7(12):1050–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Molina A, Serrano M (2013) PTEN in cancer, metabolism, and aging. Trends Endocrinol Metab 24:184–189

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Molina A, Efeyan A, Lopez-Guadamillas E et al (2012) Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab 15:382–394

    Article  CAS  PubMed  Google Scholar 

  • Pereira S, Bourgeois P, Navarro C et al (2008) HGPS and related premature aging disorders: from genomic identification to the first therapeutic approaches. Mech Ageing Dev 129:449–459

    Article  CAS  PubMed  Google Scholar 

  • Price JS, Waters JG, Darrah C et al (2002) The role of chondrocyte senescence in osteoarthritis. Aging Cell 1:57–65

    Article  CAS  PubMed  Google Scholar 

  • Ressler S, Bartkova J, Niederegger H et al (2006) p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5:379–389

    Article  CAS  PubMed  Google Scholar 

  • Rocco JW, Sidransky D (2001) p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res 264:42–55

    Article  CAS  PubMed  Google Scholar 

  • Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 102(26):9194–9199

    Article  CAS  PubMed  Google Scholar 

  • Roulland S, Navarro J-M, Grenot P et al (2006) Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis. J Exp Med 203:2425–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rübe CE, Fricke A, Widmann TA et al (2011) Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One 6:e17487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satyanarayana A, Wiemann SU, Buer J et al (2003) Telomere shortening impairs organ regeneration by inhibiting cell cycle re-entry of a subpopulation of cells. EMBO J 22:4003–4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15:397–408

    Article  CAS  PubMed  Google Scholar 

  • Sugiko W, Shimpei K, Noako O, Eiji H (2017) Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci 108(4):563–569

    Article  CAS  Google Scholar 

  • Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, Wang H, Le T, Faull KF, Chen R, Gu H, Bock C, Meissner A, Gottgens B, Darlington GJ, Li W, Goodell MA (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14(5):673–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taiwo O, Wilson GA, Emmett W, Morris T, Bonnet D, Schuster E, Adejumo T, Beck S, Pearce DJ (2013) DNA methylation analysis of murine hematopoietic side population cells during aging. Epigenetics 8(10):1114–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyner SD, Venkatachalam S, Choi J et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53

    Article  CAS  PubMed  Google Scholar 

  • Vandenberk B, Brouwers B, Hatse S et al (2011) p16INK4a: a central player in cellular senescence and a promising aging biomarker in elderly cancer patients. J Geriatr Oncol 2:259–269

    Article  Google Scholar 

  • Wang C, Liu Y, Xu LT et al (2014) Effects of aging, cytomegalovirus infection, and EBV infection on human B cell repertoires. J Immunol 192:603–611

    Article  CAS  PubMed  Google Scholar 

  • Welch JS, Ley TJ, Link DC et al (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150:264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whibley C, Pharoah PD, Hollstein M (2009) Nat Rev Cancer 9:95–107

    Article  CAS  PubMed  Google Scholar 

  • Xie M, Lu C, Wang J et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478. Blood cells of more than 2% of individuals contain mutations that may represent premalignant events that cause clonal hematopoietic expansion. More importantly, this rate grows with age

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, Xu J, Hsu JH, Nguyen M, Fujiwara Y, Peng C, Orkin SH (2014a) Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. Cell Stem Cell 14(1):68–80

    Article  CAS  PubMed  Google Scholar 

  • Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, McMichael JF, Schmidt HK, Yellapantula V, Miller CA, Ozenberger BA, Welch JS, Link DC, Walter MJ, Mardis ER, Dipersio JF, Chen F, Wilson RK, Ley TJ, Ding L (2014b) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20(12):1472–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue W, Zender L, Miething C et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucca E, Bertoni F, Vannata B et al (2014) Emerging role of infectious etiologies in the pathogenesis of marginal zone B-cell lymphomas. Clin Cancer Res 20:5207–5216

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Luan Dang Chi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Crown

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dang Chi, V.L., Sibille, C., Willard-Gallo, K., Bron, D. (2018). Aging and Malignant Hemopathies: A Complex Multistep Process. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_142-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_142-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics