Skip to main content

Predictive Assessment of Biological Damage Due to Ion Beams

  • Chapter
  • First Online:
Book cover Nanoscale Insights into Ion-Beam Cancer Therapy

Abstract

This chapter presents recent achievements in validation of the Multiscale Approach (MSA) to the physics of radiation damage with ions. An analytical recipe for the assessment of biological damage, developed using the phenomenon-based MSA, has been applied to numerous experiments, where survival curves were obtained for different cells and irradiation conditions. Contrary to other, in essence empirical methods for evaluation of macroscopic effects of ionizing radiation, the MSA predicts the biodamage based on the physical effects related to ionization of the medium, transport of secondary particles, chemical interactions, thermo-mechanical pathways of biodamage, and heuristic biological criteria for cell survival. An extensive comparison with experimental data for cell survival probability demonstrates the validity of the MSA to predict the macroscopic effects of ionizing radiation through an understanding of biological damage on the nanoscale. The analysis performed allows us to conclude that the biodamage can be accurately predicted in both aerobic and hypoxic conditions. Therefore, we anticipate this method to give great impetus to the practical improvement of ion-beam cancer therapy and the development of more efficient treatment protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alpen, EL (1998) Radiation biophysics. Academic Press

    Google Scholar 

  2. Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 82:383–425

    Article  ADS  Google Scholar 

  3. Loeffler JS, Durante M (2013) Charged particle therapy—optimization, challenges and future directions. Nat Rev Clin Oncol 10:411–424

    Article  Google Scholar 

  4. Particle therapy co-operative group (2015). http://www.ptcog.ch/index.php/facilities-in-operation. Accessed on 10/2015

  5. Surdutovich E, Solov’yov AV (2014) Multiscale approach to the physics of radiation damage with ions. Eur Phys J D 68:353

    Article  ADS  Google Scholar 

  6. Elsässer T, Krämer M, Scholz M (2008) Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys 71:866–872

    Article  Google Scholar 

  7. Hawkins RB (1996) A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental and clinical applications. Int J Radiat Biol 69:739–755

    Article  Google Scholar 

  8. Boudaïffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287:1658–1660

    Article  ADS  Google Scholar 

  9. Baccarelli I, Gianturco FA, Scifoni E, Solov’yov AV, Surdutovich E (2010) Molecular level assessments of radiation biodamage. Eur Phys J D 60:1–10

    Article  ADS  Google Scholar 

  10. Surdutovich E, Garcia G, Mason N, Solov’yov AV (2016) Nano-scale processes behind ion-beam cancer therapy. Eur Phys J D 70:86

    Article  ADS  Google Scholar 

  11. Solov’yov AV, Surdutovich E, Scifoni E, Mishustin I, Greiner W (2009) Physics of ion beam cancer therapy: a multiscale approach. Phys Rev E 79:011909

    Article  ADS  Google Scholar 

  12. Surdutovich E, Solov’yov AV (2014) Multiscale physics of ion-induced radiation damage. Appl Radiat Isot 83:100–104

    Article  Google Scholar 

  13. Surdutovich E, Solov’yov AV (2010) Shock wave initiated by an ion passing through liquid water. Phys Rev E 82:051915

    Article  ADS  Google Scholar 

  14. Surdutovich E, Yakubovich AV, Solov’yov AV (2013) Biodamage via shock waves initiated by irradiation with ions. Sci Rep 3:1289

    Article  ADS  Google Scholar 

  15. de Vera P, Currell FJ, Mason NJ, Solov’yov, AV Molecular dynamics study of accelerated ion-induced shock waves in biological media. Eur Phys J D 70:183

    Google Scholar 

  16. Ward JF (1995) Radiation mutagenesis: the initial DNA lesions responsible. Radiat Res 142:362–368

    Article  Google Scholar 

  17. Amaldi U, Kraft G (2005) Radiotherapy with beams of carbon ions. Rep Prog Phys 68:1861–1882

    Article  ADS  Google Scholar 

  18. Malyarchuk S, Castore R, Harrison L (2009) Apex1 can cleave complex clustered DNA lesions in cells. DNA Repair 8:1343–1354

    Article  Google Scholar 

  19. McMahon SJ et al (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 1:18

    Article  ADS  Google Scholar 

  20. Zhang X-D et al (2015) Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci Rep 5:8669

    Article  ADS  Google Scholar 

  21. Porcel E et al (2014) Gadolinium-based nanoparticles to improve the hadrontherapy performances. Nanomed Nanotechnol 10:1601–1608

    Article  Google Scholar 

  22. McQuaid HN et al (2016) Imaging and radiation effects of gold nanoparticles in tumour cells. Sci Rep 6:19442

    Article  ADS  Google Scholar 

  23. Sage E, Harrison L (2011) Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival. Mutat Res 711:123–133

    Article  Google Scholar 

  24. Surdutovich E, Gallagher DC, Solov’yov AV (2011) Calculation of complex DNA damage induced by ions. Phys Rev E 84:051918

    Article  ADS  Google Scholar 

  25. Surdutovich E, Yakubovich AV, Solov’yov AV (2010) Multiscale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes. Eur Phys J D 60:101–108

    Article  ADS  Google Scholar 

  26. Sanche L (2005) Low energy electron-driven damage in biomolecules. Eur Phys J D 35:367–390

    Article  ADS  Google Scholar 

  27. Huels MA, Boudaïffa B, Cloutier P, Hunting D, Sanche L (2003) Single, double, and multiple double strand breaks induced in DNA by 3–100 eV electrons. J Am Chem Soc 125:4467–4477

    Article  Google Scholar 

  28. Surdutovich E, Solov’yov AV (2012) Double strand breaks in DNA resulting from double ionization events. Eur Phys J D 66:206

    Article  ADS  Google Scholar 

  29. Folkard M, Prise KM, Vojnovic B, Davies S, Roper MJ, Michael BD (1989) The irradiation of V79 mammalian cells by protons with energies below 2 MeV. Part I: experimental arrangement and measurements of cell survival. Int J Radiat Biol 56:221–237

    Article  Google Scholar 

  30. Bug MU, Surdutovich E, Rabus H, Rosenfeld AB, Solov’yov AV (2012) Nanoscale characterization of ion tracks: MC simulations versus analytical approach. Eur Phys J D 66:291

    Article  ADS  Google Scholar 

  31. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell, 5th edn. Garland Science, Hamden, CT

    Google Scholar 

  32. Lewis NE et al (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31:759–765

    Article  Google Scholar 

  33. Morgan DO (2006) The cell cycle: principles of control. New Science Press

    Google Scholar 

  34. Jiang RD, Shen H, Piao YJ (2010) The morphometrical analysis on the ultrastructure of A549 cells. Rom J Morphol Embryol 51:663–667

    Google Scholar 

  35. Raju MR, Eisen Y, Carpenter S, Inkret WC (1991) Radiobiology of \(\alpha \) particles III. Cell inactivation by \(\alpha \)-particle traversals of the cell nucleus. Radiat Res 128:204–209

    Article  Google Scholar 

  36. Konishi T et al (2005) Number of Fe ion traversals through a cell nucleus for mammalian cell inactivation near the Bragg peak. J Radiat Res 46:415–424

    Article  Google Scholar 

  37. Tsuruoka C, Suzuki M, Kanai T, Fujitaka K (2005) LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiat Res 163:494–500

    Article  Google Scholar 

  38. Suzuki M, Kase Y, Yamaguchi H, Kanai T, Ando K (2000) Relative biological effectiveness for cell-killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon-ion beams. Int J Radiat Oncol Biol Phys 48:241–250

    Article  Google Scholar 

  39. Weyrather WK, Ritter S, Scholz M, Kraft G (1999) RBE for carbon track-segment irradiation in cell lines of differing repair capacity. Int J Radiat Biol 75:1357–1364

    Article  Google Scholar 

  40. Dang HM, van Goethem MJ, van der Graaf ER, Brandenburg S, Hoekstra R, Schlathölter T (2011) Heavy ion induced damage to plasmid DNA: plateau region vs. spread out Bragg-peak. Eur Phys J D 63:359–367

    Article  ADS  Google Scholar 

  41. Surdutovich E, Solov’yov AV (2015) Transport of secondary electrons and reactive species in ion tracks. Eur Phys J D 69:193

    Article  ADS  Google Scholar 

  42. Nikjoo H, O’Neill P, Goodhead DT, Terrissol M (1997) Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events. Int J Radiat Biol 71:467–483

    Article  Google Scholar 

  43. Stewart RD, Yu VK, Georgakilas AG, Koumenis C, Park JH, Carlson DJ (2011) Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res 176:587–602

    Article  Google Scholar 

  44. Tinganelli W et al (2015) Kill-painting of hypoxic tumours in charged particle therapy. Sci Rep 5:17016

    Article  ADS  Google Scholar 

  45. Wéra A-C, Riquier H, Heuskin A-C, Michiels C, Lucas S (2011) In vitro irradiation station for broad beam radiobiological experiments. Nucl Instrum Meth B 269:3120–3124

    Article  ADS  Google Scholar 

  46. Wéra A-C, Heuskin A-C, Riquier H, Michiels C, Lucas S (2013) Low-LET proton irradiation of A549 non-small cell lung adenocarcinoma cells: dose response and RBE determination. Radiat Res 179:273–281

    Article  Google Scholar 

  47. Autsavapromporn N, de Toledo SM, Little JB, Jay-Gerin J-P, Harris AL, Azzam EI (2011) The role of gap junction communication and oxidative stress in the propagation of toxic effects among high-dose \(\alpha \)-particle-irradiated human cells. Radiat Res 175:347–357

    Article  Google Scholar 

  48. Hamada N, Funayama T, Wada S, Sakashita T, Kakizaki T, Ni M, Kobayashi Y (2006) LET-dependent survival of irradiated normal human fibroblasts and their descendents. Radiat Res 166:24–30

    Article  Google Scholar 

  49. Tsuboi K, Tsuchida Y, Nose T, Ando K (1998) Cytotoxic effect of accelerated carbon beams on glioblastoma cell lines with p53 mutation: clonogenic survival and cell-cycle analysis. Int J Radiat Biol 74:71–79

    Article  Google Scholar 

  50. Prise KM, Folkard M, Davies S, Michael BD (1990) The irradiation of V79 mammalian cells by protons with energies below 2 MeV. Part II. Measurement of oxygen enhancement ratios and DNA damage. Int J Radiat Biol 58:261–277

    Article  Google Scholar 

  51. Staab A, Zukowski D, Walenta S, Scholz M, Mueller-Klieser W (2004) Response of chinese hamster. Radiat Res 161:219–227

    Google Scholar 

  52. Furusawa Y et al (2000) Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated \(^3\)He-, \(^{12}\)C- and \(^{20}\)Ne-ion beams. Radiat Res 154:485–496

    Article  Google Scholar 

  53. Hirayama R, Furusawa Y, Fukawa T, Ando K (2005) Repair kinetics of DNA-DSB induced by x-rays or carbon ions under oxic and hypoxic conditions. J Radiat Res 46:325–332

    Article  Google Scholar 

  54. Chapman JD, Blakely EA, Smith KC, Urtasun RC (1977) Radiobiological characterization of the inactivating events produced in mammalian cells by helium and heavy ions. Int J Radiat Oncol Biol Phys 3:97–102

    Article  Google Scholar 

  55. Štěpán V, Davídková M (2008) Impact of oxygen concentration on yields of DNA damages caused by ionizing radiation. J Phys Conf Ser 101:012015

    Article  ADS  Google Scholar 

  56. von Sonntag C (2006) Free-radical-induced DNA damage and its repair. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  57. Krämer M, Scifoni E, Wälzlein C, Durante M (2012) Ion beams in radiotherapy—from tracks to treatment planning. J Phys Conf Ser 373:012017

    Article  ADS  Google Scholar 

  58. Usami N et al (2008) Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions. Int J Radiat Biol 84:603–611

    Article  Google Scholar 

  59. Zhao J et al (2013) The potential value of the neutral comet assay and \(\gamma \)H2AX foci assay in assessing the radiosensitivity of carbon beam in human tumor cell lines. Radiol Oncol 47:247–257

    Article  Google Scholar 

  60. Usami N, Kobayashi K, Furusawa Y, Le Sech C (2016) Hadrontherapy enhanced by combination with heavy atoms: role of Auger effect in nanoparticles. In: Grumezescu AM (ed) Nanobiomaterials in cancer therapy: applications of nanobiomaterials, Ch. 14. Elsevier, Oxford, UK, pp 471–503

    Google Scholar 

  61. Goodhead DT et al (1992) Direct comparison between protons and alpha-particles of the same LET: I. Irradiation methods and inactivation of asynchronous V79, HeLa and C3H 10T2 cells. Int J Radiat Biol 61:611–624

    Article  Google Scholar 

  62. Falk M, Lukasova E, Kozubek S (2012) Repair of DNA double strand breaks. In: García Gómez-Tejedor G, Fuss MC (eds) Radiation damage in biomolecular systems, Ch. 20. Springer, pp 329–357

    Google Scholar 

  63. Hill MA, Herdman MT, Stevens DL, Jones NJ, Thacker J, Goodhead DT (2004) Relative sensitivities of repair-deficient mammalian cells for clonogenic survival after \(\alpha \)-particle irradiation. Radiat Res 162:667–676

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support received from the European Union Seventh Framework Programme (PEOPLE-2013-ITN-ARGENT project) under grant agreement no. 608163.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Verkhovtsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Verkhovtsev, A., Surdutovich, E., Solov’yov, A.V. (2017). Predictive Assessment of Biological Damage Due to Ion Beams. In: Solov’yov, A. (eds) Nanoscale Insights into Ion-Beam Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-43030-0_11

Download citation

Publish with us

Policies and ethics