Skip to main content

Pancreatic Islet Beta-Cell Replacement Strategies

  • Living reference work entry
  • First Online:
Cell Engineering and Regeneration

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 231 Accesses

Abstract

In this chapter, we outline some of the basic aspects of autoimmunity that leads to the loss of both function and quantity of pancreatic islet β-cells during progression to type 1 diabetes. Then we focus on strategies designed to promote replacement of pancreatic β-cells, either by whole pancreas or islet transplantation from cadaveric donors. In addition, approaches to engineer large populations of β-cells from embryonic or induced pluripotent stem cells as a replacement alterative to cadaveric tissue are considered. Understanding the nuances of the endocrine lineage and its developmental features has been supported by mouse genetics, with results showing promise that other endocrine cell types can become “reprogrammed” into insulin-positive cells. Thus, at the present time, several distinct approaches have the potential to drive novel therapeutic interventions designed to replace β-cells lost due to autoimmune mechanisms. In an idyllic scenario, the best approach(es) will offer strong salutary benefit with reduced or no side effects, allowing for long-term (e.g., decades), if not permanent, functioning of the transplanted tissue. The ultimate goal is full correction of hyperglycemia with minimal potential for hypoglycemic events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    History, N. M. M. o. S. (accessed 5/29/2018). “http://www.nmspacemuseum.org/halloffame/detail.php?id=139.”

  2. 2.

    NIH.gov (accessed 5/30/2018). “https://www.nih.gov/news-events/news-releases/islet-transplantation-improves-quality-life-people-hard-control-type-1-diabetes.”

References

  • Arrojo e Drigo R, Ali Y, Diez J, Srinivasan DK, Berggren PO, Boehm BO (2015) New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia 58(10):2218–2228

    Article  Google Scholar 

  • Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383(9911):69–82

    Article  Google Scholar 

  • Axelrod DA, Sung RS, Meyer KH, Wolfe RA, Kaufman DB (2010) Systematic evaluation of pancreas allograft quality, outcomes and geographic variation in utilization. Am J Transplant 10(4):837–845

    Article  Google Scholar 

  • Ballinger WF, Lacy PE (1972) Transplantation of intact pancreatic islets in rats. Surgery 72(2):175–186

    Google Scholar 

  • Banting FG, Best CH (1922) The internal secretion of the pancreas. J Lab Clin Med 7(5):465–480

    Google Scholar 

  • Bellin MD, Clark P, Usmani-Brown S, Dunn TB, Beilman GJ, Chinnakotla S, Pruett TL, Ptacek P, Hering BJ, Wang Z, Gilmore T, Wilhelm JJ, Hodges JS, Moran A, Herold KC (2017) Unmethylated insulin DNA is elevated after total pancreatectomy with islet autotransplantation: assessment of a novel beta cell marker. Am J Transplant 17(4):1112–1118

    Article  Google Scholar 

  • Burke SJ, Karlstad MD, Collier JJ (2016) Pancreatic islet responses to metabolic trauma. Shock 46(3):230–238

    Article  Google Scholar 

  • Chakravarthy H, Gu X, Enge M, Dai X, Wang Y, Damond N, Downie C, Liu K, Wang J, Xing Y, Chera S, Thorel F, Quake S, Oberholzer J, MacDonald PE, Herrera PL, Kim SK (2017) Converting adult pancreatic islet alpha cells into beta cells by targeting both Dnmt1 and Arx. Cell Metab 25(3):622–634

    Article  Google Scholar 

  • Cheatham B, Kahn CR (1995) Insulin action and the insulin signaling network. Endocr Rev 16(2):117–142

    Google Scholar 

  • Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu G, Furuyama K, Thorel F, Gribble FM, Reimann F, Herrera PL (2014) Diabetes recovery by age-dependent conversion of pancreatic delta-cells into insulin producers. Nature 514(7523):503–507

    Article  Google Scholar 

  • Collier JJ, Scott DK (2004) Sweet changes: glucose homeostasis can be altered by manipulating genes controlling hepatic glucose metabolism. Mol Endocrinol 18(5):1051–1063

    Article  Google Scholar 

  • Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429(6987):41–46

    Article  Google Scholar 

  • Fiorina P, Shapiro AM, Ricordi C, Secchi A (2008) The clinical impact of islet transplantation. Am J Transplant 8(10):1990–1997

    Article  Google Scholar 

  • Fisher MM, Watkins RA, Blum J, Evans-Molina C, Chalasani N, DiMeglio LA, Mather KJ, Tersey SA, Mirmira RG (2015) Elevations in circulating methylated and unmethylated preproinsulin DNA in new-onset type 1 diabetes. Diabetes 64(11):3867–3872

    Article  Google Scholar 

  • Girlanda R (2016) Deceased organ donation for transplantation: challenges and opportunities. World J Transplant 6(3):451–459

    Article  Google Scholar 

  • Grant RW, Dixit VD (2015) Adipose tissue as an immunological organ. Obesity (Silver Spring) 23(3):512–518

    Article  Google Scholar 

  • Gruessner RW, Gruessner AC (2013a) The current state of pancreas transplantation. Nat Rev Endocrinol 9(9):555–562

    Article  Google Scholar 

  • Gruessner RW, Gruessner AC (2013b) Pancreas transplant alone: a procedure coming of age. Diabetes Care 36(8):2440–2447

    Article  Google Scholar 

  • Henquin JC (2011) The dual control of insulin secretion by glucose involves triggering and amplifying pathways in beta-cells. Diabetes Res Clin Pract 93(Suppl 1):S27–S31

    Article  Google Scholar 

  • Herold KC, Usmani-Brown S, Ghazi T, Lebastchi J, Beam CA, Bellin MD, Ledizet M, Sosenko JM, Krischer JP, Palmer JP, Type 1 Diabetes TrialNet Study Group (2015) β cell death and dysfunction during type 1 diabetes development in at-risk individuals. J Clin Invest 125(3):1163–1173

    Article  Google Scholar 

  • History NMMoS. http://www.nmspacemuseum.org/halloffame/detail.php?id=139. Accessed 29 May 2018

  • Hohmeier HE, Newgard CB (2004) Cell lines derived from pancreatic islets. Mol Cell Endocrinol 228(1–2):121–128

    Article  Google Scholar 

  • Humar A, Kandaswamy R, Granger D, Gruessner RW, Gruessner AC, Sutherland DE (2000) Decreased surgical risks of pancreas transplantation in the modern era. Ann Surg 231(2):269–275

    Article  Google Scholar 

  • Israni AK, Skeans MA, Gustafson SK, Schnitzler MA, Wainright JL, Carrico RJ, Tyler KH, Kades LA, Kandaswamy R, Snyder JJ, Kasiske BL (2014) OPTN/SRTR 2012 annual data report: pancreas. Am J Transplant 14(Suppl 1):45–68

    Article  Google Scholar 

  • Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298(5593):601–604

    Article  Google Scholar 

  • Johnson JD (2016) The quest to make fully functional human pancreatic beta cells from embryonic stem cells: climbing a mountain in the clouds. Diabetologia 59(10):2047–2057

    Article  Google Scholar 

  • Juliana CA, Yang J, Rozo AV, Good A, Groff DN, Wang SZ, Green MR, Stoffers DA (2017) ATF5 regulates beta-cell survival during stress. Proc Natl Acad Sci USA 114(6):1341–1346

    Article  Google Scholar 

  • Kemp CB, Knight MJ, Scharp DW, Lacy PE, Ballinger WF (1973) Transplantation of isolated pancreatic islets into the portal vein of diabetic rats. Nature 244(5416):447

    Article  Google Scholar 

  • Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89(6):2548–2556

    Article  Google Scholar 

  • Lacy PE, Kostianovsky M (1967) Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16(1):35–39

    Article  Google Scholar 

  • Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18(6):675–679

    Article  Google Scholar 

  • Lehuen A, Diana J, Zaccone P, Cooke A (2010) Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 10(7):501–513

    Article  Google Scholar 

  • Li K, Zhu S, Russ HA, Xu S, Xu T, Zhang Y, Ma T, Hebrok M, Ding S (2014) Small molecules facilitate the reprogramming of mouse fibroblasts into pancreatic lineages. Cell Stem Cell 14(2):228–236

    Article  Google Scholar 

  • Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G (1975) Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 15(5):741–747

    Article  Google Scholar 

  • Lillehei RC, Simmons RL, Najarian JS, Goetz FC (1970a) Pancreatico-duodenal and renal allotransplantation in juvenile onset, insulin dependent, diabetes mellitus with terminal nephropathy. Langenbecks Arch Chir 326(2):88–105

    Article  Google Scholar 

  • Lillehei RC, Simmons RL, Najarian JS, Weil R, Uchida H, Ruiz JO, Kjellstrand CM, Goetz FC (1970b) Pancreatico-duodenal allotransplantation: experimental and clinical experience. Ann Surg 172(3):405–436

    Article  Google Scholar 

  • Ludwig B, Ludwig S, Steffen A, Saeger HD, Bornstein SR (2010) Islet versus pancreas transplantation in type 1 diabetes: competitive or complementary? Curr Diab Rep 10(6):506–511

    Article  Google Scholar 

  • Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292(5520):1389–1394

    Article  Google Scholar 

  • Mathieu C, Gillard P, Benhalima K (2017) Insulin analogues in type 1 diabetes mellitus: getting better all the time. Nat Rev Endocrinol 13(7):385–399

    Article  Google Scholar 

  • McCluskey JT, Hamid M, Guo-Parke H, McClenaghan NH, Gomis R, Flatt PR (2011) Development and functional characterization of insulin-releasing human pancreatic beta cell lines produced by electrofusion. J Biol Chem 286(25):21982–21,992

    Article  Google Scholar 

  • Menger MD, Jaeger S, Walter P, Feifel G, Hammersen F, Messmer K (1989) Angiogenesis and hemodynamics of microvasculature of transplanted islets of Langerhans. Diabetes 38(Suppl 1):199–201

    Article  Google Scholar 

  • Miralles F, Serup P, Cluzeaud F, Vandewalle A, Czernichow P, Scharfmann R (1999) Characterization of beta cells developed in vitro from rat embryonic pancreatic epithelium. Dev Dyn 214(2):116–126

    Article  Google Scholar 

  • Narushima M, Kobayashi N, Okitsu T, Tanaka Y, Li SA, Chen Y, Miki A, Tanaka K, Nakaji S, Takei K, Gutierrez AS, Rivas-Carrillo JD, Navarro-Alvarez N, Jun HS, Westerman KA, Noguchi H, Lakey JR, Leboulch P, Tanaka N, Yoon JW (2005) A human beta-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol 23(10):1274–1282

    Article  Google Scholar 

  • NIH.gov. https://www.nih.gov/news-events/news-releases/islet-transplantation-improves-quality-life-people-hard-control-type-1-diabetes. Accessed 30 May 2018

  • Oleson BJ, McGraw JA, Broniowska KA, Annamalai M, Chen J, Bushkofsky JR, Davis DB, Corbett JA, Mathews CE (2015) Distinct differences in the responses of the human pancreatic beta-cell line EndoC-betaH1 and human islets to proinflammatory cytokines. Am J Physiol Regul Integr Comp Physiol 309(5):R525–R534

    Article  Google Scholar 

  • Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes Dev 22(15):1998–2021

    Article  Google Scholar 

  • Olsen JA, Kenna LA, Spelios MG, Hessner MJ, Akirav EM (2016) Circulating differentially methylated amylin DNA as a biomarker of beta-cell loss in type 1 diabetes. PLoS One 11(4):e0152662

    Article  Google Scholar 

  • Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298(5593):597–600

    Article  Google Scholar 

  • Ravassard P, Emilie B-N, Hazhouz Y, Pechberty S, Mallet J, Czernichow P, Scharfmann R (2009) A new strategy to generate functional insulin-producing cell lines by somatic gene transfer into pancreatic progenitors. PLoS One 4(3):e4731

    Article  Google Scholar 

  • Ravassard P, Hazhouz Y, Pechberty S, Bricout-Neveu E, Armanet M, Czernichow P, Scharfmann R (2011) A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 121(9):3589–3597

    Article  Google Scholar 

  • Ricordi C, Finke EH, Dye ES, Socci C, Lacy PE (1988a) Automated isolation of mouse pancreatic islets. Transplantation 46(3):455–457

    Article  Google Scholar 

  • Ricordi C, Lacy PE, Finke EH, Olack BJ, Scharp DW (1988b) Automated method for isolation of human pancreatic islets. Diabetes 37(4):413–420

    Article  Google Scholar 

  • Robertson RP, Davis C, Larsen J, Stratta R, Sutherland DE, American Diabetes Association (2006) Pancreas and islet transplantation in type 1 diabetes. Diabetes Care 29(4):935

    Article  Google Scholar 

  • Rorsman P, Ashcroft FM (2018) Pancreatic beta-cell electrical activity and insulin secretion: of mice and men. Physiol Rev 98(1):117–214

    Article  Google Scholar 

  • Roth J, Qureshi S, Whitford I, Vranic M, Kahn CR, Fantus IG, Dirks JH (2012) Insulin’s discovery: new insights on its ninetieth birthday. Diabetes Metab Res Rev 28(4):293–304

    Article  Google Scholar 

  • Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JR, Shapiro AM (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54(7):2060–2069

    Article  Google Scholar 

  • Sander M, German MS (1997) The beta cell transcription factors and development of the pancreas. J Mol Med (Berl) 75(5):327–340

    Article  Google Scholar 

  • Schaffer AE, Taylor BL, Benthuysen JR, Liu J, Thorel F, Yuan W, Jiao Y, Kaestner KH, Herrera PL, Magnuson MA, May CL, Sander M (2013) Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity. PLoS Genet 9(1):e1003274

    Article  Google Scholar 

  • Scharfmann R, Didiesheim M, Richards P, Chandra V, Oshima M, Albagli O (2016) Mass production of functional human pancreatic beta-cells: why and how? Diabetes Obes Metab 18(Suppl 1):128–136

    Article  Google Scholar 

  • Scharp DW, Lacy PE, Santiago JV, McCullough CS, Weide LG, Falqui L, Marchetti P, Gingerich RL, Jaffe AS, Cryer PE et al (1990) Insulin independence after islet transplantation into type I diabetic patient. Diabetes 39(4):515–518

    Article  Google Scholar 

  • Shapiro AM, Pokrywczynska M, Ricordi C (2017) Clinical pancreatic islet transplantation. Nat Rev Endocrinol 13(5):268–277

    Article  Google Scholar 

  • Sharma RB, O’Donnell AC, Stamateris RE, Ha B, McCloskey KM, Reynolds PR, Arvan P, Alonso LC (2015) Insulin demand regulates beta cell number via the unfolded protein response. J Clin Invest 125(10):3831–3846

    Article  Google Scholar 

  • Sklenarova J, Petruzelkova L, Kolouskova S, Lebl J, Sumnik Z, Cinek O (2017) Glucokinase gene may be a more suitable target than the insulin gene for detection of beta cell death. Endocrinology 158(7):2058–2065

    Article  Google Scholar 

  • Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49(2):157–162

    Article  Google Scholar 

  • Staeva TP, Chatenoud L, Insel R, Atkinson MA (2013) Recent lessons learned from prevention and recent-onset type 1 diabetes immunotherapy trials. Diabetes 62(1):9–17

    Article  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50(6):537–546

    Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  Google Scholar 

  • Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464(7292):1149–1154

    Article  Google Scholar 

  • Tsonkova VG, Sand FW, Wolf XA, Grunnet LG, Kirstine Ringgaard A, Ingvorsen C, Winkel L, Kalisz M, Dalgaard K, Bruun C, Fels JJ, Helgstrand C, Hastrup S, Oberg FK, Vernet E, Sandrini MPB, Shaw AC, Jessen C, Gronborg M, Hald J, Willenbrock H, Madsen D, Wernersson R, Hansson L, Jensen JN, Plesner A, Alanentalo T, Petersen MBK, Grapin-Botton A, Honore C, Ahnfelt-Ronne J, Hecksher-Sorensen J, Ravassard P, Madsen OD, Rescan C, Frogne T (2018) The EndoC-betaH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates. Mol Metab 8:144–157

    Article  Google Scholar 

  • Wallberg M, Cooke A (2013) Immune mechanisms in type 1 diabetes. Trends Immunol 34(12):583–591

    Article  Google Scholar 

  • White MF, Kahn CR (1994) The insulin signaling system. J Biol Chem 269(1):1–4

    Google Scholar 

  • Williams P (1894) Notes on diabetes treated with extract and by grafts of sheep’s pancreas. BMJ 2:1303–1304

    Google Scholar 

  • Zhang N, Richter A, Suriawinata J, Harbaran S, Altomonte J, Cong L, Zhang H, Song K, Meseck M, Bromberg J, Dong H (2004) Elevated vascular endothelial growth factor production in islets improves islet graft vascularization. Diabetes 53(4):963–970

    Article  Google Scholar 

  • Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50(3):521–533

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jason Collier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Collier, J.J., Burke, S.J. (2018). Pancreatic Islet Beta-Cell Replacement Strategies. In: Gimble, J., Marolt, D., Oreffo, R., Redl, H., Wolbank, S. (eds) Cell Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-37076-7_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-37076-7_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-37076-7

  • Online ISBN: 978-3-319-37076-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics