Skip to main content

Simulation of Longitudinal Vortices on a High-Lift Wing

  • Conference paper
  • First Online:
Advances in Simulation of Wing and Nacelle Stall (FOR 1066 2014)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 131))

Included in the following conference series:

Abstract

The influence of longitudinal vortices on the high-lift behavior of a generic three-dimensional wing is presented. A grid convergence study is performed for the two-dimensional high-lift airfoil and different grid topologies are discussed. Numerical simulations are performed with the DLR TAU-Code at different angles of attack. For the simulations, the Menter-SST turbulence model is applied. A simplified vortex system originates at a spanwise slat cut-off. The vortex system passes along the suction side of the wing and influences the high-lift and stall behavior. The characteristics of the vortices are described and the influence on the stall mechanism is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bier, N., Rohlmann, D., Rudnik, R.: Numerical Maximum Lift Prediction of a Realistic Commercial Aircraft in Landing Configuration. AIAA 2012–0279, Nashville (2012)

    Google Scholar 

  2. Büscher, A., Radespiel, R.: A method for the aerodynamic analysis and design of nonplanar lifting configurations an transonic speeds. Jahrbuch DGLR Bd. 1, 603–612 (2003)

    Google Scholar 

  3. Cécora, R.-D., Radespiel, R., Eisfeld, B., Probst, A.: Differential Reynolds-Stress Modeling for Aeronautics. Journal of Aircraft (2014). doi: 10.2514/1.J053250

    Google Scholar 

  4. Craft, T.J., Gerasimov, A.V., Launder, B.E., Robinson, C.M.E.: A computational study of the near-field generation and decay of wingtip vortices. International Journal of Heat and Fluid Flow 27, 684–695 (2006)

    Article  Google Scholar 

  5. Crippa, S., Melber-Wilkending, S., Rudnik, R.: DLR Contribution to the First High Lift Prediction Workshop. AIAA 2011–938, Orlando (2011)

    Google Scholar 

  6. Eliasson, P., Catalano, P, Le Pape, M.-C., Ortmann, J., Pelizzari, E., Ponsin, J.: Improved CFD Predictions for High Lift Flows in the European Project EUROLIFT II. AIAA 2007–4303, Miami (2007)

    Google Scholar 

  7. Emunds, R.: Leading edge vortex system of the a380 at high angles of attack in landing configuration. In: Third Symposium Simulation of Wing and Nacelle Stall, Braunschweig (2012)

    Google Scholar 

  8. Frhr, V., Geyr, H., Schade, N., van der Burg, J.W., Eliasson, P., Esquieu, S.: CFD Prediction of Maximum Lift Effects on Realistic High-Lift-Commercial-Aircraft-Configurations within the European project EUROLIFT II. AIAA 2007–4299, Miami (2007)

    Google Scholar 

  9. Hahn, D., Scholz, P., Radespiel, R.: Experimental evaluation of the stall characteristics of a two-element high-lift airfoil. In: Second Symposium Simulation of Wing and Nacelle Stall, Braunschweig (2010)

    Google Scholar 

  10. Long, M., Mavriplis, D.: NSU3D Results for the First AIAA High Lift Prediction Workshop. AIAA 2011–863, Orlando (2011)

    Google Scholar 

  11. Menter, F.R.: Zonal Two Equation k-\(\omega \) Turbulence Models for Aerodynamic Flows. AIAA 93–2906, Orlando (1993)

    Google Scholar 

  12. Reuß, S., Probst, A., Knopp, T.: Numerical investigation of the DLR F15 two-element airfoil using a Reynolds stress model. In: Third Symposium Simulation of Wing and Nacelle Stall, Braunschweig (2012)

    Google Scholar 

  13. Rudnik, R., Frhr, V., Geyr, H.: The European High Lift Project EUROLIFT II - Objectives, Approach, and Structure. AIAA 2007–4296, Miami (2007)

    Google Scholar 

  14. Rudnik, R.: Stall Behaviour of the EUROLIFT High Lift Configurations. AIAA 2008–836, Reno (2008)

    Google Scholar 

  15. Rudnik, R., Reckzeh, D., Quest, J.: HINVA - High lift INflight Validation - Project Overview and Status. AIAA 2012–0106, Nashville (2012)

    Google Scholar 

  16. Rudolph, P.K.C.: High-Lift Systems on Commercial Subsonic Airliners. NASA CR 4746 (1996)

    Google Scholar 

  17. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: recent applications in research and industry. In: ECCOMAS CFD 2006, Egmond aan Zee (2006)

    Google Scholar 

  18. Schwamborn, D., Gardner, A.D., von Geyr, H., Krumbein, A., Lüdeke, H., Stürmer, A.: Development of the DLR TAU-Code for Aerospace Applications. In: ICASAT 2008, Bangalore (2008)

    Google Scholar 

  19. Sclafani, A.J., Slotnick, J.P., Vassberg, J.C., Pulliam, T.H., Lee, H.C.: OVERFLOW Analysis of the NASA Trap Wing Model from the First High Lift Prediction Workshop. AIAA 2011–866, Orlando (2011)

    Google Scholar 

  20. Smith, A.M.O.: High Lift Aerodynamics. Journal of Aircraft 12(6), 501–530 (1975)

    Article  Google Scholar 

  21. Wild, J.: Numerische Optimierung von weidimensionalen Hochauftriebskonfigurationen durch Lösung der Navier-Stokes-Gleichungen. PhD thesis, Institut für Aerodynamik und Strömungsmechanik, Braunschweig (2001)

    Google Scholar 

  22. Wild, J., Brezillon, J., Amoignon, O., Quest, J., Moens, F., Quagliarella, D.: Advanced High-Lift Design by Numerical Methods and Wind Tunnel Verification within the European Project EUROLIFT II. AIAA 2007–4300, Miami (2007)

    Google Scholar 

  23. Wild, J.: Experimental investigation of Mach- and Reynolds-number dependencies of the stall behavior of 2-element and 3-element high-lift wing sections. AIAA 2012–0108, Nashville (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Landa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Landa, T., Wild, J., Radespiel, R. (2016). Simulation of Longitudinal Vortices on a High-Lift Wing. In: Radespiel, R., Niehuis, R., Kroll, N., Behrends, K. (eds) Advances in Simulation of Wing and Nacelle Stall. FOR 1066 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-319-21127-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21127-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21126-8

  • Online ISBN: 978-3-319-21127-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics