Skip to main content

Type I Interferons in Immune Defense Against Streptococci

  • Chapter
  • First Online:
Bacterial Activation of Type I Interferons

Summary

Infections with Streptococcus pneumoniae, Group A Streptococcus (GAS), and Group B Streptococcus (GBS) are among the most frequent bacterial infections in humans and major causes of diseases. Immune responses against streptococci include the induction of type I interferons (IFNs), which are immunomodulatory cytokines with well-established antiviral functions, but ambiguous roles in bacterial infections. Studies of streptococcal infections further highlight the importance of type I IFN signaling in host defense against bacterial pathogens. We discuss the complexity of type I IFN induction by streptococcal ligands and their engagement in stimulating innate immune receptors. Furthermore, we elaborate on the broad physiological role and different impacts of type I IFN signaling on the outcome of streptococcal infections and influenza virus coinfections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trinchieri G (2010) Type I interferon: friend or foe? J Exp Med 207:2053–2063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Decker T, Muller M, Stockinger S (2005) The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol 5:675–687

    Article  PubMed  CAS  Google Scholar 

  3. Freudenberg MA, Merlin T, Kalis C, Chvatchko Y, Stubig H et al (2002) Cutting edge: a murine, IL-12-independent pathway of IFN-gamma induction by gram-negative bacteria based on STAT4 activation by Type I IFN and IL-18 signaling. J Immunol 169:1665–1668

    Article  PubMed  CAS  Google Scholar 

  4. Mancuso G, Gambuzza M, Midiri A, Biondo C, Papasergi S et al (2009) Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nat Immunol 10:587–594

    Article  PubMed  CAS  Google Scholar 

  5. Plumlee CR, Lee C, Beg AA, Decker T, Shuman HA et al (2009) Interferons direct an effective innate response to Legionella pneumophila infection. J Biol Chem 284:30058–30066

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Parker D, Martin FJ, Soong G, Harfenist BS, Aguilar JL et al (2011) Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract. MBio 2:e00016-00011

    Google Scholar 

  7. O’Connell RM, Saha SK, Vaidya SA, Bruhn KW, Miranda GA et al (2004) Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med 200:437–445

    Article  PubMed  PubMed Central  Google Scholar 

  8. Auerbuch V, Brockstedt DG, Meyer-Morse N, O’Riordan M, Portnoy DA (2004) Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med 200:527–533

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Carrero JA, Calderon B, Unanue ER (2004) Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to listeria infection. J Exp Med 200:535–540

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Stockinger S, Kastner R, Kernbauer E, Pilz A, Westermayer S et al (2009) Characterization of the interferon-producing cell in mice infected with Listeria monocytogenes. PLoS Pathog 5:e1000355

    Article  PubMed  PubMed Central  Google Scholar 

  11. Henry T, Kirimanjeswara GS, Ruby T, Jones JW, Peng K et al (2010) Type I IFN signaling constrains IL-17A/F secretion by gammadelta T cells during bacterial infections. J Immunol 184:3755–3767

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Monroe KM, McWhirter SM, Vance RE (2010) Induction of type I interferons by bacteria. Cell Microbiol 12:881–890

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Johansson L, Thulin P, Low DE, Norrby-Teglund A (2010) Getting under the skin: the immunopathogenesis of Streptococcus pyogenes deep tissue infections. Clin Infect Dis 51:58–65

    Article  PubMed  Google Scholar 

  14. Wessels MR (2011) Clinical practice. Streptococcal pharyngitis. N Engl J Med 364:648–655

    Article  PubMed  CAS  Google Scholar 

  15. Carapetis JR, Steer AC, Mulholland EK, Weber M (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5:685–694

    Article  PubMed  Google Scholar 

  16. Morens DM, Fauci AS (2007) The 1918 influenza pandemic: insights for the 21st century. J Infect Dis 195:1018–1028

    Article  PubMed  Google Scholar 

  17. Zakikhany K, Degail MA, Lamagni T, Waight P, Guy R et al (2011) Increase in invasive Streptococcus pyogenes and Streptococcus pneumoniae infections in England, December 2010 to January 2011. Euro Surveill 16

    Google Scholar 

  18. Kotb M, Norrby-Teglund A, McGeer A, El-Sherbini H, Dorak MT et al (2002) An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat Med 8:1398–1404

    Article  PubMed  CAS  Google Scholar 

  19. Olsen RJ, Shelburne SA, Musser JM (2009) Molecular mechanisms underlying group A streptococcal pathogenesis. Cell Microbiol 11:1–12

    Article  PubMed  CAS  Google Scholar 

  20. Medina E (2010) Murine model of cutaneous infection with Streptococcus pyogenes. Methods Mol Biol 602:395–403

    Article  PubMed  Google Scholar 

  21. Bisno AL, Brito MO, Collins CM (2003) Molecular basis of group A streptococcal virulence. Lancet Infect Dis 3:191–200

    Article  PubMed  CAS  Google Scholar 

  22. Lynskey NN, Lawrenson RA, Sriskandan S (2011) New understandings in Streptococcus pyogenes. Curr Opin Infect Dis 24:196–202

    Article  PubMed  Google Scholar 

  23. Molloy EM, Cotter PD, Hill C, Mitchell DA, Ross RP (2011) Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 9:670–681

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Sitkiewicz I, Nagiec MJ, Sumby P, Butler SD, Cywes-Bentley C et al (2006) Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2. Proc Natl Acad Sci U S A 103:16009–16014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Nozawa T, Furukawa N, Aikawa C, Watanabe T, Haobam B et al (2011) CRISPR inhibition of prophage acquisition in Streptococcus pyogenes. PLoS One 6:e19543

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Goldmann O, Rohde M, Chhatwal GS, Medina E (2004) Role of macrophages in host resistance to group A streptococci. Infect Immun 72:2956–2963

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Loof TG, Rohde M, Chhatwal GS, Jung S, Medina E (2007) The contribution of dendritic cells to host defenses against Streptococcus pyogenes. J Infect Dis 196:1794–1803

    Article  PubMed  CAS  Google Scholar 

  29. Navarini AA, Lang KS, Verschoor A, Recher M, Zinkernagel AS et al (2009) Innate immune-induced depletion of bone marrow neutrophils aggravates systemic bacterial infections. Proc Natl Acad Sci U S A 106:7107–7112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Wang B, Dileepan T, Briscoe S, Hyland KA, Kang J et al (2010) Induction of TGF-beta1 and TGF-beta1-dependent predominant Th17 differentiation by group A streptococcal infection. Proc Natl Acad Sci U S A 107:5937–5942

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Dileepan T, Linehan JL, Moon JJ, Pepper M, Jenkins MK et al (2011) Robust antigen specific Th17 T cell response to group A Streptococcus is dependent on IL-6 and intranasal route of infection. PLoS Pathog 7:e1002252

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Goldmann O, Lengeling A, Bose J, Bloecker H, Geffers R et al (2005) The role of the MHC on resistance to group a streptococci in mice. J Immunol 175:3862–3872

    Article  PubMed  CAS  Google Scholar 

  33. Fox GF, Anderson LC, Loew FM, Quimby FW (2002) Laboratory animal medicine. Academic, Elsevier

    Google Scholar 

  34. Tart AH, Walker MJ, Musser JM (2007) New understanding of the group A Streptococcus pathogenesis cycle. Trends Microbiol 15:318–325

    Article  PubMed  CAS  Google Scholar 

  35. Brehm MA, Jouvet N, Greiner DL, Shultz LD (2013) Humanized mice for the study of infectious diseases. Curr Opin Immunol 25:428–435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Gratz N, Siller M, Schaljo B, Pirzada ZA, Gattermeier I et al (2008) Group A Streptococcus activates type I interferon production and MyD88-dependent signaling without involvement of TLR2, TLR4, and TLR9. J Biol Chem 283:19879–19887

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Miettinen M, Lehtonen A, Julkunen I, Matikainen S (2000) Lactobacilli and Streptococci activate NF-kappa B and STAT signaling pathways in human macrophages. J Immunol 164:3733–3740

    Article  PubMed  CAS  Google Scholar 

  38. Gratz N, Hartweger H, Matt U, Kratochvill F, Janos M et al (2011) Type I interferon production induced by Streptococcus pyogenes-derived nucleic acids is required for host protection. PLoS Pathog 7:e1001345

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Marie I, Durbin JE, Levy DE (1998) Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J 17:6660–6669

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Loof TG, Goldmann O, Medina E (2008) Immune recognition of Streptococcus pyogenes by dendritic cells. Infect Immun 76:2785–2792

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Watanabe T, Asano N, Murray PJ, Ozato K, Tailor P et al (2008) Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J Clin Invest 118:545–559

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K et al (2009) Activation of innate immune antiviral responses by Nod2. Nat Immunol 10:1073–1080

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Oldenburg M, Kruger A, Ferstl R, Kaufmann A, Nees G et al (2012) TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337:1111–1115

    Article  PubMed  CAS  Google Scholar 

  44. Li XD, Chen ZJ (2012) Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. Elife 1:e00102

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hidmark A, von Saint Paul A, Dalpke AH (2012) Cutting edge: TLR13 is a receptor for bacterial RNA. J Immunol 189:2717–2721

    Article  PubMed  CAS  Google Scholar 

  46. Sun L, Wu J, Du F, Chen X, Chen ZJ (2012) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791

    Article  PubMed  Google Scholar 

  47. Wu J, Sun L, Chen X, Du F, Shi H et al (2012) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339(6121):826–830

    Article  PubMed  Google Scholar 

  48. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–792

    Article  PubMed  CAS  Google Scholar 

  50. Li XD, Wu J, Gao D, Wang H, Sun L et al (2013) Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341:1390–1394

    Article  PubMed  CAS  Google Scholar 

  51. Gao D, Wu J, Wu YT, Du F, Aroh C et al (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:903–906

    Article  PubMed  CAS  Google Scholar 

  52. Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B et al (2014) Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505:691–695

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T et al (2013) Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503:530–534

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Shahangian A, Chow EK, Tian X, Kang JR, Ghaffari A et al (2009) Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest 119:1910–1920

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Nakamura S, Davis KM, Weiser JN (2011) Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice. J Clin Invest 121:3657–3665

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA et al (2006) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16:396–400

    Article  PubMed  CAS  Google Scholar 

  57. Chang A, Khemlani A, Kang H, Proft T (2011) Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor. Mol Microbiol 79:1629–1642

    Article  PubMed  CAS  Google Scholar 

  58. Walker MJ, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK et al (2007) DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 13:981–985

    Article  PubMed  CAS  Google Scholar 

  59. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175

    Article  PubMed  CAS  Google Scholar 

  60. Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5:577–582

    Article  PubMed  CAS  Google Scholar 

  61. Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S et al (2005) Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202:1131–1139

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Zinkernagel AS, Hruz P, Uchiyama S, von Kockritz-Blickwede M, Schuepbach RA et al (2012) Importance of Toll-like receptor 9 in host defense against M1T1 group A Streptococcus infections. J Innate Immun 4:213–218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Mishalian I, Ordan M, Peled A, Maly A, Eichenbaum MB et al (2011) Recruited macrophages control dissemination of group A Streptococcus from infected soft tissues. J Immunol 187:6022–6031

    Article  PubMed  CAS  Google Scholar 

  64. Harder J, Franchi L, Munoz-Planillo R, Park JH, Reimer T et al (2009) Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-{kappa}B activation but proceeds independently of TLR signaling and P2X7 receptor. J Immunol 183:5823–5829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Dagnew AF, Cunnington MC, Dube Q, Edwards MS, French N et al (2012) Variation in reported neonatal group B streptococcal disease incidence in developing countries. Clin Infect Dis 55:91–102

    Article  PubMed  Google Scholar 

  66. Lozano R, Wang H, Foreman KJ, Rajaratnam JK, Naghavi M et al (2011) Progress towards millennium development goals 4 and 5 on maternal and child mortality: an updated systematic analysis. Lancet 378:1139–1165

    Article  PubMed  Google Scholar 

  67. Koenig JM, Keenan WJ (2009) Group B Streptococcus and early-onset sepsis in the era of maternal prophylaxis. Pediatr Clin North Am 56:689–708, Table of Contents

    Google Scholar 

  68. Henneke P, Berner R (2006) Interaction of neonatal phagocytes with group B Streptococcus: recognition and response. Infect Immun 74:3085–3095

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Mancuso G, Midiri A, Beninati C, Biondo C, Galbo R et al (2004) Dual role of TLR2 and myeloid differentiation factor 88 in a mouse model of invasive group B streptococcal disease. J Immunol 172:6324–6329

    Article  PubMed  CAS  Google Scholar 

  70. Costa A, Gupta R, Signorino G, Malara A, Cardile F et al (2012) Activation of the NLRP3 inflammasome by group B streptococci. J Immunol 188:1953–1960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Deshmukh SD, Muller S, Hese K, Rauch KS, Wennekamp J et al (2012) NO is a macrophage autonomous modifier of the cytokine response to streptococcal single-stranded RNA. J Immunol 188:774–780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Teti G, Mancuso G, Tomasello F, Chiofalo MS (1992) Production of tumor necrosis factor-alpha and interleukin-6 in mice infected with group B streptococci. Circ Shock 38:138–144

    PubMed  CAS  Google Scholar 

  73. Pannaraj PS, Edwards MS, Ewing KT, Lewis AL, Rench MA et al (2009) Group B streptococcal conjugate vaccines elicit functional antibodies independent of strain O-acetylation. Vaccine 27:4452–4456

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Mancuso G, Midiri A, Biondo C, Beninati C, Zummo S et al (2007) Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. J Immunol 178:3126–3133

    Article  PubMed  CAS  Google Scholar 

  75. Charrel-Dennis M, Latz E, Halmen KA, Trieu-Cuot P, Fitzgerald KA et al (2008) TLR-independent type I interferon induction in response to an extracellular bacterial pathogen via intracellular recognition of its DNA. Cell Host Microbe 4:543–554

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H et al (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501–505

    Article  PubMed  CAS  Google Scholar 

  77. Deshmukh SD, Kremer B, Freudenberg M, Bauer S, Golenbock DT et al (2011) Macrophages recognize streptococci through bacterial single-stranded RNA. EMBO Rep 12:71–76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Sinclair A, Xie X, Teltscher M, Dendukuri N (2013) Systematic review and meta-analysis of a urine-based pneumococcal antigen test for diagnosis of community-acquired pneumonia caused by Streptococcus pneumoniae. J Clin Microbiol 51:2303–2310

    Article  PubMed  PubMed Central  Google Scholar 

  79. van der Poll T, Opal SM (2009) Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 374:1543–1556

    Article  PubMed  Google Scholar 

  80. Koppe U, Suttorp N, Opitz B (2012) Recognition of Streptococcus pneumoniae by the innate immune system. Cell Microbiol 14:460–466

    Article  PubMed  CAS  Google Scholar 

  81. Patenge N, Fiedler T, Kreikemeyer B (2013) Common regulators of virulence in streptococci. Curr Top Microbiol Immunol 368:111–153

    PubMed  Google Scholar 

  82. Mitchell AM, Mitchell TJ (2010) Streptococcus pneumoniae: virulence factors and variation. Clin Microbiol Infect 16:411–418

    Article  PubMed  CAS  Google Scholar 

  83. Knapp S, Wieland CW, van’t Veer C, Takeuchi O, Akira S et al (2004) Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J Immunol 172:3132–3138

    Google Scholar 

  84. Schroder NW, Morath S, Alexander C, Hamann L, Hartung T et al (2003) Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278:15587–15594

    Article  PubMed  Google Scholar 

  85. Albiger B, Dahlberg S, Sandgren A, Wartha F, Beiter K et al (2007) Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Cell Microbiol 9:633–644

    Article  PubMed  CAS  Google Scholar 

  86. Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M et al (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A 100:1966–1971

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Davis KM, Nakamura S, Weiser JN (2011) Nod2 sensing of lysozyme-digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice. J Clin Invest 121:3666–3676

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Witzenrath M, Pache F, Lorenz D, Koppe U, Gutbier B et al (2011) The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J Immunol 187:434–440

    Article  PubMed  CAS  Google Scholar 

  89. McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE et al (2010) Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog 6:e1001191

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fang R, Tsuchiya K, Kawamura I, Shen Y, Hara H et al (2011) Critical roles of ASC inflammasomes in caspase-1 activation and host innate resistance to Streptococcus pneumoniae infection. J Immunol 187:4890–4899

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Joyce EA, Popper SJ, Falkow S (2009) Streptococcus pneumoniae nasopharyngeal colonization induces type I interferons and interferon-induced gene expression. BMC Genomics 10:404

    Article  PubMed  PubMed Central  Google Scholar 

  92. Koppe U, Hogner K, Doehn JM, Muller HC, Witzenrath M et al (2012) Streptococcus pneumoniae stimulates a STING- and IFN regulatory factor 3-dependent type I IFN production in macrophages, which regulates RANTES production in macrophages, cocultured alveolar epithelial cells, and mouse lungs. J Immunol 188:811–817

    Article  PubMed  CAS  Google Scholar 

  93. Li W, Moltedo B, Moran TM (2012) Type I interferon induction during influenza virus infection increases susceptibility to secondary Streptococcus pneumoniae infection by negative regulation of gammadelta T cells. J Virol 86:12304–12312

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Jamieson AM, Pasman L, Yu S, Gamradt P, Homer RJ et al (2013) Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science 340(6137):1230–1234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Hertzen E, Johansson L, Kansal R, Hecht A, Dahesh S et al (2012) Intracellular Streptococcus pyogenes in human macrophages display an altered gene expression profile. PLoS One 7:e35218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H et al (2004) Autophagy defends cells against invading group A Streptococcus. Science 306:1037–1040

    Article  PubMed  CAS  Google Scholar 

  97. Yamaguchi H, Nakagawa I, Yamamoto A, Amano A, Noda T et al (2009) An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7. PLoS Pathog 5:e1000670

    Article  PubMed  PubMed Central  Google Scholar 

  98. Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK et al (2008) Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28:675–686

    Article  PubMed  CAS  Google Scholar 

  99. Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC et al (2013) Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340:207–211

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J et al (2013) Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340:202–207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Gonzalez-Navajas JM, Lee J, David M, Raz E (2012) Immunomodulatory functions of type I interferons. Nat Rev Immunol 12:125–135

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Kovarik P, Sauer I, Schaljo B (2007) Molecular mechanisms of the anti-inflammatory functions of interferons. Immunobiology 212:895–901

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Kovarik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kovarik, P., Castiglia, V., Janos, M. (2014). Type I Interferons in Immune Defense Against Streptococci. In: Parker, D. (eds) Bacterial Activation of Type I Interferons. Springer, Cham. https://doi.org/10.1007/978-3-319-09498-4_4

Download citation

Publish with us

Policies and ethics