Skip to main content

Fluorination in the Design of Membrane Protein Assemblies

  • Protocol
  • First Online:
Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1063))

  • 2488 Accesses

Abstract

Protein design approaches based on the binary patterning of nonpolar and polar amino acids have been successful in generating native-like protein structures of amphiphilic α-helices or idealized amphiphilic β-strands in aqueous solution. Such patterning is not possible in the nonpolar environment of biological membranes, precluding the application of conventional approaches to the design of membrane proteins that assemble into discrete aggregates. This review surveys a promising, new strategy for membrane protein design that exploits the unique properties of fluorocarbons—in particular, their ability to phase separate from both water (due to their hydrophobicity) and hydrocarbons (due to their lipophobicity)—to generate membrane protein assemblies. The ability to design such discrete assemblies should enable the disruption of protein-protein interactions and provide templates for novel biomaterials and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almén MS, Nordström KJV, Fredriksson R et al (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50

    Article  PubMed  Google Scholar 

  2. Lunn CA (2012) Membrane proteins as drug targets. Academic, London

    Google Scholar 

  3. Bowie JU (2005) Solving the membrane protein folding problem. Nature 438:581–589

    Article  PubMed  CAS  Google Scholar 

  4. Walters RFS, DeGrado WF (2006) Helix-packing motifs in membrane proteins. Proc Natl Acad Sci USA 103:13658–13663

    Article  PubMed  CAS  Google Scholar 

  5. Yin H, Slusky JS, Berger BW et al (2007) Computational design of peptides that target transmembrane helices. Science 315:1817–1822

    Article  PubMed  CAS  Google Scholar 

  6. Caputo GA, Litvinov RI, Li W et al (2008) Computationally designed peptide inhibitors of protein-protein interactions in membranes. Biochemistry 47:8600–8606

    Article  PubMed  CAS  Google Scholar 

  7. Choma C, Gratkowski H, Lear JD et al (2000) Asparagine-mediated self-association of a model transmembrane helix. Nat Struct Biol 7:161–166

    Article  PubMed  CAS  Google Scholar 

  8. DeGrado WF, Gratkowski H, Lear JD (2003) How do helix-helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo-oligomeric helical bundles. Protein Sci 12:647–665

    Article  PubMed  CAS  Google Scholar 

  9. Zhou FX, Cocco MJ, Russ WP et al (2000) Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat Struct Biol 7:154–160

    Article  PubMed  CAS  Google Scholar 

  10. Therien AE, Grant FEM, Deber CM (2001) Interhelical hydrogen bonds in the CFTR membrane domain. Nat Struct Biol 8:597–601

    Article  PubMed  CAS  Google Scholar 

  11. Kamtekar S, Schiffer JM, Xiong H et al (1993) Protein design by binary patterning of polar and nonpolar amino-acids. Science 262:1680–1685

    Article  PubMed  CAS  Google Scholar 

  12. Rees DC, DeAntonio L, Eisenberg D (1989) Hydrophobic organization of membrane-proteins. Science 245:510–513

    Article  PubMed  CAS  Google Scholar 

  13. Bilgiçer B, Fichera A, Kumar K (2001) A coiled coil with a fluorous core. J Am Chem Soc 123:4393–4399

    Article  PubMed  Google Scholar 

  14. Tang Y, Ghirlanda G, Vaidehi N et al (2001) Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine. Biochemistry 40:2790–2796

    Article  PubMed  CAS  Google Scholar 

  15. Son S, Tanrikulu IC, Tirrell DA (2006) Stabilization of bzip peptides through incorporation of fluorinated aliphatic residues. ChemBioChem 7:1251–1257

    Article  PubMed  CAS  Google Scholar 

  16. Lee K-H, Lee H-Y, Slutsky MM et al (2004) Fluorous effect in proteins: de novo design and characterization of a four-alpha-helix bundle protein containing hexafluoroleucine. Biochemistry 43:16277–16284

    Article  PubMed  CAS  Google Scholar 

  17. Lee H-Y, Lee K-H, Al-Hashimi HM et al (2006) Modulating protein structure with fluorous amino acids: increased stability and native-like structure conferred on a 4-helix bundle protein by hexafluoroleucine. J Am Chem Soc 128:337–343

    Article  PubMed  CAS  Google Scholar 

  18. Buer BC, de la Salud-Bea R, Al-Hashimi HM et al (2009) Engineering protein stability and specificity using fluorous amino acids: the importance of packing effects. Biochemistry 48:10810–10817

    Article  PubMed  CAS  Google Scholar 

  19. Buer BC, Meagher JL, Stuckey JA et al (2012) Structural basis for the enhanced stability of highly fluorinated proteins. Proc Natl Acad Sci USA 109:4810–4815

    Article  PubMed  CAS  Google Scholar 

  20. Bilgiçer B, Xing X, Kumar K (2001) Programmed self-sorting of coiled coils with leucine and hexafluoroleucine cores. J Am Chem Soc 123:11815–11816

    Article  PubMed  Google Scholar 

  21. Bilgiçer B, Kumar K (2002) Synthesis and thermodynamic characterization of self-sorting coiled coils. Tetrahedron 58:4105–4112

    Article  Google Scholar 

  22. Gottler LM, de la Salud-Bea R, Marsh ENG (2008) The fluorous effect in proteins: properties of alpha F-4(6), a 4-alpha-helix bundle protein with a fluorocarbon core. Biochemistry 47:4484–4490

    Article  PubMed  CAS  Google Scholar 

  23. Bilgiçer B, Kumar K (2004) De novo design of defined helical bundles in membrane environments. Proc Natl Acad Sci USA 101: 15324–15329

    Article  PubMed  Google Scholar 

  24. Naarmann N, Bilgiçer B, Meng H et al (2006) Fluorinated interfaces drive self-association of transmembrane α helices in lipid bilayers. Angew Chem Int Ed 45:2588–2591

    Article  CAS  Google Scholar 

  25. Scott RL (1948) The solubility of fluorocarbons. J Am Chem Soc 70:4090–4093

    Article  PubMed  CAS  Google Scholar 

  26. Hildebrand JH, Cochran D (1949) Liquid-liquid solubility of perfluoromethylcyclohexane with benzene, carbon tetrachloride, chlorobenzene, chloroform and toluene. J Am Chem Soc 71:22–25

    Article  CAS  Google Scholar 

  27. Dunitz JD (2004) Organic fluorine: odd man out. ChemBioChem 5:614–621

    Article  PubMed  CAS  Google Scholar 

  28. Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289

    Article  PubMed  CAS  Google Scholar 

  29. Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3:429–438

    Article  PubMed  CAS  Google Scholar 

  30. Montclare JK, Son S, Clark GA et al (2009) Biosynthesis and stability of coiled-coil peptides containing (2 S,4 R)-5,5,5-trifluoroleucine and (2 S,4 S)-5,5,5-trifluoroleucine. ChemBioChem 10:84–86

    Article  PubMed  CAS  Google Scholar 

  31. Wang P, Fichera A, Kumar K et al (2004) Alternative translations of a single RNA message: an identity switch of (2S,3R)-4,4,4-trifluorovaline between valine and isoleucine codons. Angew Chem Int Ed 43: 3664–3666

    Article  CAS  Google Scholar 

  32. Lupas AN, Gruber M (2005) The structure of α-helical coiled coils. Adv Protein Chem 70: 37–38

    Article  PubMed  CAS  Google Scholar 

  33. Woolfson DN (2005) The design of coiled-coil structures and assemblies. Adv Protein Chem 70:79–112

    Article  PubMed  CAS  Google Scholar 

  34. Harbury PB, Zhang T, Kim PS et al (1993) A switch between 2-stranded, 3-stranded and 4-stranded coiled coils in Gcn4 leucine-zipper mutants. Science 262:1401–1407

    Article  PubMed  CAS  Google Scholar 

  35. Acharya A, Ruvinov SB, Gal J et al (2002) A heterodimerizing leucine zipper coiled coil system for examining the specificity of a position interactions: amino acids I, V, L, N, A, and K. Biochemistry 41:14122–14131

    Article  PubMed  CAS  Google Scholar 

  36. Mecinovic J, Snyder PW, Mirica KA et al (2011) Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the “hydrophobic wall” of carbonic anhydrase. J Am Chem Soc 133:14017–14026

    Article  PubMed  CAS  Google Scholar 

  37. Curran DP (2001) Fluorous reverse phase silica gel. A new tool for preparative separations in synthetic organic and organofluorine chemistry. Synlett 9:1488–1496

    Article  Google Scholar 

  38. Horvath IT, Rabai J (1994) Facile catalyst separation without water—fluorous biphase hydroformylation of olefins. Science 266: 72–75

    Article  PubMed  CAS  Google Scholar 

  39. Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24: 1551–1557

    Article  PubMed  CAS  Google Scholar 

  40. Marr AK, Gooderham WJ, Hancock REW (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472

    Article  PubMed  CAS  Google Scholar 

  41. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  42. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55:4–30

    Article  PubMed  CAS  Google Scholar 

  43. Niemz A, Tirrell DA (2001) Self-association and membrane-binding behavior of melittins containing trifluoroleucine. J Am Chem Soc 123:7407–7413

    Article  PubMed  CAS  Google Scholar 

  44. Meng H, Kumar K (2007) Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. J Am Chem Soc 129:15615–15622

    Article  PubMed  CAS  Google Scholar 

  45. Gottler LM, Lee H-Y, Shelburne CE et al (2008) Using fluorous amino acids to modulate the biological activity of an antimicrobial peptide. ChemBioChem 9:370–373

    Article  PubMed  CAS  Google Scholar 

  46. Gottler LM, de la Salud-Bea R, Shelburne CE et al (2008) Using fluorous amino acids to probe the effects of changing hydrophobicity on the physical and biological properties of the beta-hairpin antimicrobial peptide protegrin-1. Biochemistry 47:9243–9250

    Article  PubMed  CAS  Google Scholar 

  47. Hellmann N, Schwarz G (1998) Peptide-liposome association. A critical examination with mastoparan-X. Biochim Biophys Acta 1369:267–277

    Article  PubMed  CAS  Google Scholar 

  48. Daniels DS, Petersson EJ, Qiu JX et al (2007) High-resolution structure of a beta-peptide bundle. J Am Chem Soc 129:1532–1533

    Article  PubMed  CAS  Google Scholar 

  49. Molski MA, Goodman JL, Craig CJ et al (2010) beta-peptide bundles with fluorous cores. J Am Chem Soc 132:3658–3659

    Article  PubMed  CAS  Google Scholar 

  50. Barton AFM (1991) CRC handbook of solubility parameters and other cohesion parameters. CRC, Boca Raton, FL

    Google Scholar 

  51. Bates FS, Wignall GD, Koehler WC (1985) Critical behavior of binary liquid mixtures of deuterated and protonated polymers. Phys Rev Lett 55:2425–2428

    Article  PubMed  CAS  Google Scholar 

  52. Hildebrand JH, Scott RL (1949) Solubility of non-electrolytes, 3rd edn. Reinhold, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Krishnamurthy, V.M., Kumar, K. (2013). Fluorination in the Design of Membrane Protein Assemblies. In: Ghirlanda, G., Senes, A. (eds) Membrane Proteins. Methods in Molecular Biology, vol 1063. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-583-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-583-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-582-8

  • Online ISBN: 978-1-62703-583-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics