Skip to main content

Engineering and Utilization of Reporter Cell Lines for Cell-Based Assays of Transmembrane Receptors

  • Protocol
  • First Online:
Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1063))

  • 2461 Accesses

Abstract

Transmembrane receptors, a subset of integral membrane proteins, are the receivers that transduce an extracellular chemical message into an intracellular response. Accordingly, these proteins are of particular interest in the scientific community and are probably best studied as part of a cellular system. Herein, we detail the engineering of a fluorescent and bioluminescent reporter cell line for a transmembrane receptor and how to employ it in a directed evolution screen that identifies peptide regulators of receptor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Heijne G (2007) The membrane protein universe: what’s out there and why bother? J Intern Med 261(6):543–557

    Article  Google Scholar 

  2. Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10(1): 47–60

    Article  PubMed  CAS  Google Scholar 

  3. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5(12):993–996

    Article  PubMed  CAS  Google Scholar 

  4. Russ AP, Lampel S (2005) The druggable genome: an update. Drug Discov Today 10(23–24):1607–1610

    Article  PubMed  Google Scholar 

  5. Katzen F, Peterson TC, Kudlicki W (2009) Membrane protein expression: no cells required. Trends Biotechnol 27(8):455–460

    Article  PubMed  CAS  Google Scholar 

  6. Maurice P et al (2011) GPCR-interacting proteins, major players of GPCR function. Adv Pharmacol 62:349–380

    Article  PubMed  CAS  Google Scholar 

  7. Akira S (2003) Toll-like receptor signaling. J Biol Chem 278(40):38105–38108

    Article  PubMed  CAS  Google Scholar 

  8. Daugherty PS, Iverson BL, Georgiou G (2000) Flow cytometric screening of cell-based libraries. J Immunol Methods 243(1–2): 211–227

    Article  PubMed  CAS  Google Scholar 

  9. Arnold FH (1998) Design by directed evolution. Accounts Chem Res 31:125–131

    Article  CAS  Google Scholar 

  10. Cammett TJ et al (2010) Construction and genetic selection of small transmembrane proteins that activate the human erythropoietin receptor. Proc Natl Acad Sci USA 107(8):3447–3452

    Article  PubMed  CAS  Google Scholar 

  11. Caputo GA et al (2008) Computationally designed peptide inhibitors of protein-protein interactions in membranes. Biochemistry 47(33):8600–8606

    Article  PubMed  CAS  Google Scholar 

  12. Chin CN, Sachs JN, Engelman DM (2005) Transmembrane homodimerization of receptor-like protein tyrosine phosphatases. FEBS Lett 579(17):3855–3858

    Article  PubMed  CAS  Google Scholar 

  13. Finger C, Escher C, Schneider D (2009) The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci Signal 2(89):ra56

    Article  PubMed  Google Scholar 

  14. Li R et al (2004) Dimerization of the transmembrane domain of Integrin alphaIIb subunit in cell membranes. J Biol Chem 279(25): 26666–26673

    Article  PubMed  CAS  Google Scholar 

  15. Nemoto W, Toh H (2006) Membrane interactive alpha-helices in GPCRs as a novel drug target. Curr Protein Pept Sci 7(6):561–575

    Article  PubMed  CAS  Google Scholar 

  16. Yin H et al (2007) Computational design of peptides that target transmembrane helices. Science 315(5820):1817–1822

    Article  PubMed  CAS  Google Scholar 

  17. Zhang H et al (2002) Integrin-nucleated Toll-like receptor (TLR) dimerization reveals subcellular targeting of TLRs and distinct mechanisms of TLR4 activation and signaling. FEBS Lett 532(1–2):171–176

    Article  PubMed  CAS  Google Scholar 

  18. Zhu H et al (2010) Specificity for homooligomer versus heterooligomer formation in integrin transmembrane helices. J Mol Biol 401(5): 882–891

    Article  PubMed  CAS  Google Scholar 

  19. Talbert-Slagle K et al (2009) Artificial transmembrane oncoproteins smaller than the bovine papillomavirus E5 protein redefine sequence requirements for activation of the platelet-derived growth factor beta receptor. J Virol 83(19):9773–9785

    Article  PubMed  CAS  Google Scholar 

  20. Horwitz BH et al (1988) 44-amino-acid E5 transforming protein of bovine papillomavirus requires a hydrophobic core and specific carboxyl-terminal amino acids. Mol Cell Biol 8(10):4071–4078

    PubMed  CAS  Google Scholar 

  21. Klein O et al (1999) The bovine papillomavirus E5 protein requires a juxtamembrane negative charge for activation of the platelet-derived growth factor beta receptor and transformation of C127 cells. J Virol 73(4):3264–3272

    PubMed  CAS  Google Scholar 

  22. Klein O et al (1998) Role of glutamine 17 of the bovine papillomavirus E5 protein in platelet-derived growth factor beta receptor activation and cell transformation. J Virol 72(11):8921–8932

    PubMed  CAS  Google Scholar 

  23. Schlegel R et al (1986) The E5 transforming gene of bovine papillomavirus encodes a small, hydrophobic polypeptide. Science 233(4762):464–467

    Article  PubMed  CAS  Google Scholar 

  24. Sparkowski J et al (1996) E5 oncoprotein transmembrane mutants dissociate fibroblast transforming activity from 16-kilodalton protein binding and platelet-derived growth factor receptor binding and phosphorylation. J Virol 70(4):2420–2430

    PubMed  CAS  Google Scholar 

  25. Surti T et al (1998) Structural models of the bovine papillomavirus E5 protein. Proteins 33(4):601–612

    Article  PubMed  CAS  Google Scholar 

  26. Marlatt SA et al (2011) Construction and maintenance of randomized retroviral expression libraries for transmembrane protein engineering. Protein Eng Des Sel 24(3): 311–320

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (CHE 0954819) and the National Institutes of Health (GM 103843 and GM 101279) for financial supports.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lluis, M.W., Yin, H. (2013). Engineering and Utilization of Reporter Cell Lines for Cell-Based Assays of Transmembrane Receptors. In: Ghirlanda, G., Senes, A. (eds) Membrane Proteins. Methods in Molecular Biology, vol 1063. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-583-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-583-5_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-582-8

  • Online ISBN: 978-1-62703-583-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics