Skip to main content

Drug Delivery Approaches for Ovarian Cancer Therapy

  • Protocol
  • First Online:
Ovarian Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1049))

  • 5054 Accesses

Abstract

Tumor-specific drug delivery represents a challenging issue that restricts the clinical applications of many advanced anticancer therapeutics. Ovarian cancer exhibits a quite specific pattern of dissemination: it spreads primarily within the peritoneal cavity, providing a possibility of locoregional, intraperitoneal drug administration. Considering this unique aspect of ovarian cancer biology, this chapter provides a short review of most promising approaches for therapeutic delivery of genetic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sultana S, Khan MR, Kumar M, Kumar S, Ali M (2013) Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J Drug Target 21(2):107–125. doi:10.3109/1061186X.2012.712130

    Google Scholar 

  2. Diou O, Tsapis N, Fattal E (2012) Targeted nanotheranostics for personalized cancer therapy. Expert Opin Drug Deliv 9:1475–1487

    Article  PubMed  CAS  Google Scholar 

  3. Hirsjarvi S, Passirani C, Benoit JP (2011) Passive and active tumour targeting with nanocarriers. Curr Drug Discov Technol 8:188–196

    Article  PubMed  CAS  Google Scholar 

  4. Sodek KL, Murphy KJ, Brown TJ, Ringuette MJ (2012) Cell–cell and cell-matrix dynamics in intraperitoneal cancer metastasis. Cancer Metastasis Rev 31:397–414

    Article  PubMed  CAS  Google Scholar 

  5. Hasovits C, Clarke S (2012) Pharmacokinetics and pharmacodynamics of intraperitoneal cancer chemotherapeutics. Clin Pharmacokinet 51:203–224

    Article  PubMed  CAS  Google Scholar 

  6. Ceelen WP, Flessner MF (2010) Intraperitoneal therapy for peritoneal tumors: biophysics and clinical evidence. Nat Rev Clin Oncol 7:108–115

    Article  PubMed  Google Scholar 

  7. Zahedi P, Yoganathan R, Piquette-Miller M, Allen C (2012) Recent advances in drug delivery strategies for treatment of ovarian cancer. Expert Opin Drug Deliv 9:567–583

    Article  PubMed  CAS  Google Scholar 

  8. Kanerva A, Raki M, Hemminki A (2007) Gene therapy of gynaecological diseases. Expert Opin Biol Ther 7:1347–1361

    Article  PubMed  CAS  Google Scholar 

  9. Tros de Ilarduya C, Sun Y, Duzgunes N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40:159–170

    Article  PubMed  CAS  Google Scholar 

  10. Garcia L, Urbiola K, Duzgunes N, Tros de Ilarduya C (2012) Lipopolyplexes as nanomedicines for therapeutic gene delivery. Methods Enzymol 509:327–338

    Article  PubMed  CAS  Google Scholar 

  11. Malek A, Merkel O, Fink L, Czubayko F, Kissel T et al (2009) In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes. Toxicol Appl Pharmacol 236:97–108

    Article  PubMed  CAS  Google Scholar 

  12. Hobel S, Koburger I, John M, Czubayko F, Hadwiger P et al (2010) Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with Bevacizumab. J Gene Med 12:287–300

    PubMed  Google Scholar 

  13. Mangala LS, Han HD, Lopez-Berestein G, Sood AK (2009) Liposomal siRNA for ovarian cancer. Methods Mol Biol 555:29–42

    Article  PubMed  CAS  Google Scholar 

  14. Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD et al (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3:151–157

    Article  PubMed  CAS  Google Scholar 

  15. Chiappini C, Tasciotti E, Fakhoury JR, Fine D, Pullan L et al (2010) Tailored porous silicon microparticles: fabrication and properties. Chemphyschem 11:1029–1035

    Article  PubMed  CAS  Google Scholar 

  16. Godin B, Tasciotti E, Liu X, Serda RE, Ferrari M (2011) Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc Chem Res 44:979–989

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP et al (2010) Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 70:3687–3696

    Article  PubMed  CAS  Google Scholar 

  18. Liu X, Suo R, Xiong SL, Zhang QH, Yi GH (2012) HDL drug carriers for targeted therapy. Clin Chim Acta 415C:94–100

    Google Scholar 

  19. Shahzad MM, Mangala LS, Han HD, Lu C, Bottsford-Miller J et al (2011) Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia 13:309–319

    PubMed  CAS  Google Scholar 

  20. Nakayama T, Butler JS, Sehgal A, Severgnini M, Racie T et al (2012) Harnessing a physiologic mechanism for siRNA delivery with mimetic lipoprotein particles. Mol Ther 20:1582–1589

    Article  PubMed  CAS  Google Scholar 

  21. Ding Y, Wang W, Feng M, Wang Y, Zhou J et al (2012) A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Biomaterials 33:8893–8905

    Article  PubMed  CAS  Google Scholar 

  22. Bang C, Thum T (2012) Exosomes: new players in cell–cell communication. Int J Biochem Cell Biol 44:2060–2064

    Article  PubMed  CAS  Google Scholar 

  23. Vickers KC, Remaley AT (2012) Lipid-based carriers of microRNAs and intercellular communication. Curr Opin Lipidol 23:91–97

    Article  PubMed  CAS  Google Scholar 

  24. Ohno S, Ishikawa A, Kuroda M (2013) Roles of exosomes and microvesicles in disease pathogenesis. Adv Drug Deliv Rev 65(3):398–401. doi:10.1016/j.addr.2012.07.019

  25. Martins VR, Dias MS, Hainaut P (2013) Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Curr Opin Oncol 25(1):66–75. doi:10.1097/CCO.0b013e32835b7c81

    Google Scholar 

  26. El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y et al (2012) Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc 7:2112–2126

    Article  PubMed  CAS  Google Scholar 

  27. El Andaloussi S, Lakhal S, Mager I, Wood MJ (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65(3):391–397. doi: 10.1016/j.addr.2012.08.008

    Google Scholar 

  28. Peng P, Yan Y, Keng S (2011) Exosomes in the ascites of ovarian cancer patients: origin and effects on anti-tumor immunity. Oncol Rep 25:749–762

    PubMed  CAS  Google Scholar 

  29. Escrevente C, Keller S, Altevogt P, Costa J (2011) Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 11:108

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Malek, A. (2013). Drug Delivery Approaches for Ovarian Cancer Therapy. In: Malek, A., Tchernitsa, O. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 1049. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-547-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-547-7_33

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-546-0

  • Online ISBN: 978-1-62703-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics