Skip to main content

Challenges in Experimental Modeling of Ovarian Cancerogenesis

  • Protocol
  • First Online:
Ovarian Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1049))

Abstract

Ovarian cancer is a complex disease, with unclear origins, complicated, multistep tumorigenesis, and variable outcomes. As such, generating experimental models to study the disease and treatment efficacies has proven to be extremely challenging. A number of studies have utilized monolayer in vitro experiments to decipher the cellular changes in ovarian cancer and responses to different treatment approaches. Others have generated three-dimensional spheroid cultures to evaluate cellular function in an environment with more physiological contact with other cells and their matrices. Lastly, a variety of in vivo models have been used to investigate the onset and progression of ovarian cancer and how tumors respond to treatments in an intact physiological environment. This chapter discusses a number of different experimental approaches to study the etiology, biology, and pathology of ovarian tumors and their response to different anticancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. Tan DS, Agarwal R, Kaye SB (2006) Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol 7:925–934

    Article  PubMed  Google Scholar 

  3. Shepherd TG, Theriault BL, Campbell EJ, Nachtigal EW (2006) Primary culture of ovarian surface epithelial cells and ascites-derived ovarian cancer cells from patients. Nat Protoc 1:2643–2649

    Article  PubMed  CAS  Google Scholar 

  4. Frankel A, Rosen K, Filmus J, Kerbel RS (2001) Induction of anoikis and suppression of human ovarian tumor growth in vivo y down-regulation of Bcl-XL1. Cancer Res 61:4837–4841

    PubMed  CAS  Google Scholar 

  5. Sher I, Adham SA, Petrik J, Coomber BL (2009) Autocrine VEGF-A/KDR loop protects epithelial ovarian carcinoma cells from anoikis. Int J Cancer 124:553–561

    Article  PubMed  CAS  Google Scholar 

  6. He X, Ota T, Liu P, Su C, Chien J, Shridhar V (2010) Downregulation of HtrA1 promotes resistance to anoikis and peritoneal dissemination of ovarian cancer cells. Cancer Res 70:3108–3118

    Article  Google Scholar 

  7. Liu J, Yang G, Thompson-Lanza JA, Glassman A, Hayes K, Patterson A, Marquez RT, Auersperg N, Yu Y, Hahn WC, Mills GB, Bast RC Jr (2004) A genetically defined model for human cancer. Cancer Res 64:1655–1663

    Article  PubMed  CAS  Google Scholar 

  8. Burleson KM, Casey RC, Skubitz KM, Pambuccian SE, Oegema TR Jr, Skubitz AP (2004) Ovarian carcinoma spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol Oncol 93:170–181

    Article  PubMed  CAS  Google Scholar 

  9. Burleson KM, Hansen LK, Skubitz AP (2004) Ovarian carcinoma spheroids disaggregate on type I collagen and invade live human mesothelial cell monolayers. Clin Exp Metastasis 21:685–697

    Article  PubMed  CAS  Google Scholar 

  10. Ahmed N, Thompson EW, Quinn MA (2007) Epithelial-mesenchymal inter-conversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 213:581–588

    Article  PubMed  CAS  Google Scholar 

  11. Sodek KL, Ringuette MJ, Brown TJ (2009) Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. Int J Cancer 124:2060–2070

    Article  PubMed  CAS  Google Scholar 

  12. Gregoire L, Rabah R, Schmelz EM, Munkarah A, Roberts PC, Lancaster WD (2001) Spontaneous malignant transformation of human ovarian surface epithelial cells in vitro. Clin Cancer Res 7:4280–4287

    PubMed  CAS  Google Scholar 

  13. Sasaki R, Narisawa-Saito M, Yugawa T, Fujita M, Tashiro H, Katabuchi H, Kiyono T (2008) Oncogenic transformation of human ovarian surface epithelial cells with defined cellular oncogenes. Carcinogenesis 30:423–431

    Article  Google Scholar 

  14. Roberts PC, Motitillo EP, Baxa AC, Heng HHQ, Doyon-Reale N, Gregoire L, Lancaster WD, Rabah R, Schmelz EM (2005) Sequential molecular and cellular events during neoplastic progression: a mouse syngeneic ovarian cancer model. Neoplasia 7:944–956

    Article  PubMed  CAS  Google Scholar 

  15. Greenaway J, Moorehead R, Shaw P, Petrik J (2008) Epithelial-stromal interaction increases cell proliferation, survival and tumorigenicity in a mouse model of human epithelial ovarian cancer. Gynecol Oncol 108:385–394

    Article  PubMed  CAS  Google Scholar 

  16. Connolly DC, Bao R, Nikitin AY, Stephens KC, Poole TW, Hua X, Harris SS, Vanderhyden BC, Hamilton TC (2003) Female mice chimeric for expression of the simian virus 40 Tag under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res 63:1389–1397

    PubMed  CAS  Google Scholar 

  17. Hensley H, Quinn BA, Wolf RL, Litwin SL, Mabuchi S, Williams SJ, Williams C, Hamilton TC, Connolly DC (2007) Magnetic resonance imaging for detection and determination of tumor volume in a genetically engineered mouse model of ovarian cancer. Caner Biol Ther 6:1717–1725

    Article  Google Scholar 

  18. Mabuchi S, Altomare DA, Connolly DC, Klein-Szanto A, Litwin S, Hoelzle MK, Hensley HH, Hamilton TC, Testa JR (2007) RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 67:2408–2413

    Article  PubMed  CAS  Google Scholar 

  19. Lawrenson K, Benjamin E, Turmaine M, Jacobs I, Gayther S, Dafou D (2009) In vitro three-dimensional modeling of human ovarian surface epithelial cells. Cell Prolif 42:385–393

    Article  PubMed  CAS  Google Scholar 

  20. Jin ZH, Josserand V, Razkin J, Garanger E, Boturyn D, Favrot MC, Dumy P, Coll JL (2006) Noninvasive optical imaging of ovarian metastases using Cy5-labeled RAFT-c(-RGDfk-)4. Mol Imaging 5:188–197

    PubMed  Google Scholar 

  21. Granot D, Kunz-Schughart LA, Neeman M (2005) Labeling fibroblasts with biotin-BSA-GdDTPA-FAM for tracking of tumor associated stroma by fluorescence and MR imaging. Magn Reson Med 54:789–797

    Article  PubMed  CAS  Google Scholar 

  22. Nunez-Cruz S, Connolly DC, Scholler N (2010) An orthotopic model of serous ovarian cancer in immunocompetent mice for in vivo tumor imaging and monitoring of tumor responses. J Visual Exp 45:1–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Petrik, J.J. (2013). Challenges in Experimental Modeling of Ovarian Cancerogenesis. In: Malek, A., Tchernitsa, O. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 1049. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-547-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-547-7_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-546-0

  • Online ISBN: 978-1-62703-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics