Skip to main content

Detection of Cytoplasmic and Nuclear Functions of mTOR by Fractionation

  • Protocol
  • First Online:
mTOR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 821))

Abstract

Subcellular localization constitutes the environment in which proteins act. It tightly controls access to and availability of different types of molecular interacting partners and is therefore a major determinant of protein function and regulation. Originally thought to be a mere cytoplasmic kinase the mammalian target of rapamycin (mTOR) has recently been localized to various intracellular compartments including the nucleus and specific components of the endomembrane system such as lysosomes. The identification of essential binding partners and the structural and functional partitioning of mTOR into two distinct multiprotein complexes warrant the detailed investigation of the subcellular localization of mTOR as part of mTORC1 and mTORC2. Upon establishment of experimental conditions allowing cytoplasmic/nuclear fractionation at high purity and maximum mTOR complex recovery we have previously shown that the mTOR/raptor complex (mTORC1) is predominantly cytoplasmic whereas the mTOR/rictor complex (mTORC2) is abundant in both compartments. Moreover, the mTORC2 complex components rictor and sin1 are dephosphorylated and dynamically distributed between the cytoplasm and the nucleus upon long-term treatment with the mTOR-inhibitor rapamycin. These findings further demonstrate that the here presented and detailly described fractionation procedure is a valuable tool to study protein localization and cytoplasmic/nuclear protein shuttling in the context of expanding mTOR signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594.

    Article  PubMed  CAS  Google Scholar 

  2. Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 19:14071–14077.

    Article  Google Scholar 

  3. Averous J, Proud CG (2006) When translation meets transformation: the mTOR story. Oncogene 25:6423–6435.

    Article  PubMed  CAS  Google Scholar 

  4. Proud CG (2007) Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403:217–234.

    Article  PubMed  CAS  Google Scholar 

  5. Yang TT, Yu RY, Agadir A et al (2008) Integration of protein kinases mTOR and extracellular signal-regulated kinase 5 in regulating nucleocytoplasmic localiztaion of NFATc4. Mol Cell Biol 28:3489–3501.

    Article  PubMed  CAS  Google Scholar 

  6. Cunningham JT, Rodgers JT, Arlow DH et al (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450:736–740.

    Article  PubMed  CAS  Google Scholar 

  7. Tsang CK, Liu H, Zheng XF (2010) mTOR binds to the promoters of RNA polymerase I- and III-transcribed genes. Cell Cycle 9:953–957.

    Article  PubMed  CAS  Google Scholar 

  8. Desai BN, Myers BR, Schreiber SL (2002) FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci USA 99:4319–4324.

    Article  PubMed  CAS  Google Scholar 

  9. Schieke SM, Phillips D, McCoy JP Jr et al (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281:27643–27652.

    Article  PubMed  CAS  Google Scholar 

  10. Drenan RM, Liu X, Bertram PG et al (2004) FKBP12-rapamycin-associated protein or mammalian target of rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and Golgi apparatus. J Biol Chem 279:772–778.

    Article  PubMed  CAS  Google Scholar 

  11. Liu X, Zheng XF (2007) Endoplasmic reticulum and Golgi localization sequences for mammalian target of rapamycin. Mol Biol Cell 18:1073–1082.

    Article  PubMed  CAS  Google Scholar 

  12. Flinn RJ, Yan Y, Goswami S et al (2010) The late endosome is essential for mTORC1 signaling. Mol Biol Cell 21:833–841.

    Article  PubMed  CAS  Google Scholar 

  13. Sancak Y, Bar-Peled L, Zoncu R et al (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 14:290–303.

    Article  Google Scholar 

  14. Partovian C, Ju R, Zhuang ZW et al (2008) Syndecan-4 regulates subcellular localization of mTOR Complex2 and Akt activation in a PKCalpha-dependent manner in endothelial cells. Mol Cell 32:140–149.

    Article  PubMed  CAS  Google Scholar 

  15. Kim JE, Chen J (2000) Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc Natl Acad Sci USA 97:14340–14345.

    Article  PubMed  CAS  Google Scholar 

  16. Park IH, Bachmann R, Shirazi H et al (2002) Regulation of ribosomal S6 kinase by mammalian target of rapamycin. J Biol Chem 277:31423–31429.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang X, Shu L, Hosoi H et al (2002) Predominant nuclear localization of mammalian target of rapamycin in normal and malignant cells in culture. J Biol Chem 277:28127–28134.

    Article  PubMed  CAS  Google Scholar 

  18. Bernardi R, Guernah I, Jin D et al (2006) PML inhibits HIF-1 alpha translation and neoangiogenesis through repression of mTOR. Nature 442:779–785.

    Article  PubMed  CAS  Google Scholar 

  19. Panasyuk G, Nemazanyy I, Zhyvoloup A et al (2009) mTORbeta splicing isoform promotes cell proliferation and tumorigenesis. J Biol Chem 284:30807–30814.

    Article  PubMed  CAS  Google Scholar 

  20. Goh ET, Pardo OE, Michael N et al (2010) Involvement of heterogeneous ribonucleoprotein F in the regulation of cell proliferation via the mammalian target of rapamycin/S6 kinase 2 pathway. J Biol Chem 285:17065–17076.

    Article  PubMed  CAS  Google Scholar 

  21. Kantidakis T, Ramsbottom BA, Birch JL et al (2010) mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf-1. Proc Natl Acad Sci USA 107:11823–11828.

    Article  PubMed  CAS  Google Scholar 

  22. Shor B, Wu J, Shakey Q et al (2010) Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J Biol Chem 285:15380–15392.

    Article  PubMed  CAS  Google Scholar 

  23. Kim DH, Sarbassov DD, Ali SM et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175.

    Article  PubMed  CAS  Google Scholar 

  24. Rosner M, Hengstschläger M (2008) Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 17:2934–2948.

    Article  PubMed  CAS  Google Scholar 

  25. Rosner M, Fuchs C, Siegel N et al (2009) Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Hum Mol Genet 18:3298–3310.

    Article  PubMed  CAS  Google Scholar 

  26. Rosner M, Siegel N, Fuchs C et al (2010) Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nat Protoc 5:1081–1095.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank all laboratory members for their helpful discussion and assistance in developing this protocol. This work was supported by the Herzfelder’sche Familienstiftung and the Österreichische Nationalbank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hengstschläger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rosner, M., Hengstschläger, M. (2012). Detection of Cytoplasmic and Nuclear Functions of mTOR by Fractionation. In: Weichhart, T. (eds) mTOR. Methods in Molecular Biology, vol 821. Humana Press. https://doi.org/10.1007/978-1-61779-430-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-430-8_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-429-2

  • Online ISBN: 978-1-61779-430-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics