Skip to main content

RNAi in the Malaria Vector, Anopheles gambiae

  • Protocol
  • First Online:
Therapeutic Applications of RNAi

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 555))

Abstract

Malaria is a disease that kills more than a million people each year in tropical and subtropical countries. The disease is caused by Plasmodium parasites and is transmitted to humans exclusively by mosquitoes of the genus Anopheles. The lack of functional approaches has hampered study of the biological networks that determine parasite transmission by the insect vector. The recent discovery of RNA interference and its adaptation to mosquitoes is now providing crucial tools for the dissection of vector–parasite interactions and for the analysis of aspects of mosquito biology influencing the vectorial capacity. Two RNAi approaches have been established in mosquitoes: transient gene silencing by direct injection of double-stranded RNA, and stable expression of hairpin RNAs from transgenes integrated in the genome. Here we describe these methods in detail, providing information about their use and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Dijk, M. R., Waters, A. P., and Janse, C. J. (1995) Stable transfection of malaria parasite blood stages Science 268, 1358–1362.

    Article  PubMed  Google Scholar 

  2. Blandin, S., Moita, L. F., Köcher, T., Wilm, M., Kafatos, F. C., and Levashina, E. A. (2002) Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene EMBO Rep 3, 852–856.

    Article  PubMed  CAS  Google Scholar 

  3. Handler, A. M., and Harrell, R. A., 2nd (1999) Germline transformation of Drosophila melanogaster with the piggyBac transposon vector Insect Mol Biol 8, 449–457.

    Article  PubMed  CAS  Google Scholar 

  4. Brown, A. E., Bugeon, L., Crisanti, A., and Catteruccia, F.(2003) Stable and heritable gene silencing in the malaria vector Anopheles stephensi Nucleic Acids Res 31, e85.

    Article  Google Scholar 

  5. Brown, A. E., Crisanti, A., and Catteruccia, F.(2003) Comparative analysis of DNA vectors at mediating RNAi in Anopheles mosquito cells and larvae J Exp Biol 206, 1817–1823.

    Article  PubMed  CAS  Google Scholar 

  6. Henschel, A., Buchholz, F., and Habermann, B.(2004) DEQOR: a web-based tool for the design and quality control of siRNAs Nucleic Acids Res 32, W113–W120.

    Article  PubMed  CAS  Google Scholar 

  7. Catteruccia, F., Nolan, T., Loukeris, T. G., Blass, C., Savakis, C., Kafatos, F. C., and Crisanti, A.(2000) Stable germline transformation of the malaria mosquito Anopheles stephensi Nature 405, 959–962.

    Article  CAS  Google Scholar 

  8. Lobo, N. F., Clayton, J. R., Fraser, M. J., Kafatos, F. C., and Collins, F. H.(2006) High efficiency germ-line transformation of mosquitoes Nat Protoc 1, 1312–1317.

    Article  PubMed  CAS  Google Scholar 

  9. Frolet, C., Thoma, M., Blandin, S., Hoffmann, J. A., and Levashina, E. A. (2006) Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei. Immunity 25, 677–685.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors first developed these methodologies while working at the EMBL in the group of Professor Fotis C. Kafatos (dsRNA injections) and in the laboratory of Professor Andrea Crisanti at Imperial College London (transgenesis). They further acknowledge members of the London and Strasbourg laboratories for constructive discussions. This work was supported by grants from CNRS, Inserm, Wellcome Trust, BBSRC, Schlumberger Foundation For Education and Research (FSER), and by the 6th European Commission Programme “Networks of Excellence” BioMalPar. F.C. is a MRC Career Development fellow. E.A.L. is an International Scholar of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Catteruccia, F., Levashina, E.A. (2009). RNAi in the Malaria Vector, Anopheles gambiae . In: Rondinone, C., Reidhaar-Olson, J. (eds) Therapeutic Applications of RNAi. Methods in Molecular Biology™, vol 555. Humana Press. https://doi.org/10.1007/978-1-60327-295-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-295-7_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-294-0

  • Online ISBN: 978-1-60327-295-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics