Skip to main content

Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials

  • Protocol
  • First Online:
Virus-Derived Nanoparticles for Advanced Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

M13 bacteriophages have several qualities that make them attractive candidates as building blocks for tissue regenerating scaffold materials. Through genetic engineering, a high density of functional peptides and proteins can be simultaneously displayed on the M13 bacteriophage’s outer coat proteins. The resulting phage can self-assemble into nanofibrous network structures and can guide the tissue morphogenesis through proliferation, differentiation and apoptosis. In this manuscript, we will describe methods to develop major coat-engineered M13 phages as a basic building block and aligned tissue-like matrices to develop regenerative nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huber AB, Kolodkin AL, Ginty DD, Cloutier JF (2003) Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26:509–563

    Article  CAS  PubMed  Google Scholar 

  2. Milner R, Campbell IL (2002) The integrin family of cell adhesion molecules has multiple functions within the CNS. J Neurosci Res 69:286–291

    Article  CAS  PubMed  Google Scholar 

  3. Rutka JT, Apodaca G, Stern R, Rosenblum M (1988) The extracellular-matrix of the central and peripheral nervous systems - structure and function. J Neurosurg 69:155–170

    Article  CAS  PubMed  Google Scholar 

  4. Oster SF, Deiner A, Birgbauer E, Sretavan DW (2004) Ganglion cell axon pathfinding in the retina and optic nerve. Semin Cell Dev Biol 15:125–136

    Article  CAS  PubMed  Google Scholar 

  5. Tirrell M, Kokkoli E, Biesalski M (2002) The role of surface science in bioengineered materials. Surf Sci 500:61–83

    Article  CAS  Google Scholar 

  6. Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA (2008) Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol 26:39–47

    Article  CAS  PubMed  Google Scholar 

  7. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  CAS  Google Scholar 

  8. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  9. Schense JC, Bloch J, Aebischer P, Hubbell JA (2000) Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat Biotechnol 18:415–419

    Article  CAS  PubMed  Google Scholar 

  10. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138

    Article  CAS  Google Scholar 

  11. Liu WF, Chen CS (2005) Engineering biomaterials to control cell function. Mater Today 8:8

    Article  Google Scholar 

  12. Silva GA et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    Article  CAS  PubMed  Google Scholar 

  13. Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610

    Article  CAS  PubMed  Google Scholar 

  14. Teng YD et al (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 99:3024–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang SG (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  CAS  PubMed  Google Scholar 

  16. Saha K, Irwin EF, Kozhukh J, Schaffer DV, Healy KE (2007) Biomimetic interfacial interpenetrating polymer networks control neural stem cell behavior. J Biomed Mater Res A 81:240–249

    Article  CAS  PubMed  Google Scholar 

  17. Ellis-Behnke RG et al (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci U S A 103:5054–5059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stroumpoulis D, Zhang HN, Rubalcava L, Gliem J, Tirrell M (2007) Cell adhesion and growth to peptide-patterned supported lipid membranes. Langmuir 23:3849–3856

    Article  CAS  PubMed  Google Scholar 

  19. Gomez N, Chen SC, Schmidt CE (2007) Polarization of hippocampal neurons with competitive surface stimuli: contact guidance cues are preferred over chemical ligands. J R Soc Interf 4:223–233

    Article  CAS  Google Scholar 

  20. Saha K et al (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95:4426–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ivanovska IL, Shin JW, Swift J, Discher DE (2015) Stem cell mechanobiology: diverse lessons from bone marrow. Trends Cell Biol 25:523–532

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dogic Z, Fraden S (1997) Smectic phase in a colloidal suspension of semiflexible virus particles. Phys Rev Lett 78:2417–2420

    Article  CAS  Google Scholar 

  23. Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410

    Article  CAS  PubMed  Google Scholar 

  24. Petrenko VA, Smith GP, Gong X, Quinn T (1996) A library of organic landscapes on filamentous phage. Protein Eng 9:797–801

    Article  CAS  PubMed  Google Scholar 

  25. Huang Y et al (2005) Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett 5:1429–1434

    Article  CAS  PubMed  Google Scholar 

  26. Lee SW, Mao CB, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895

    Article  CAS  PubMed  Google Scholar 

  27. Nam KT et al (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    Article  CAS  PubMed  Google Scholar 

  28. Chung WJ et al (2011) Biomimetic self-templating supramolecular structures. Nature 478:364–368

    Article  CAS  PubMed  Google Scholar 

  29. Lee BY et al (2012) Virus-based piezoelectric energy generation. Nat Nanotechnol 7:351–356

    Article  CAS  PubMed  Google Scholar 

  30. Lee JH et al (2017) Phage-based structural color sensors and their pattern recognition sensing system. ACS Nano 11:3632–3641

    Article  CAS  PubMed  Google Scholar 

  31. Webster R (1996) Biology of the filamentous bacteriophage. In: Phage display of peptides and proteins. Academic Press, San Diego, CA, pp 1–20

    Google Scholar 

  32. Russel M (1995) Moving through the membrane with filamentous phages. Trends Microbiol 3:223–228

    Article  CAS  PubMed  Google Scholar 

  33. Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci 51:627–659

    Article  CAS  Google Scholar 

  34. Dogic Z, Fraden S (2006) Ordered phases of filamentous viruses. Curr Opin Colloid Interface Sci 11:47–55

    Article  CAS  Google Scholar 

  35. Merzlyak A, Lee SW (2006) Phage as templates for hybrid materials and mediators for nanomaterial synthesis. Curr Opin Chem Biol 10:246–252

    Article  CAS  PubMed  Google Scholar 

  36. Flynn CE, Lee SW, Peelle BR, Belcher AM (2003) Viruses as vehicles for growth, organization and assembly of materials. Acta Mater 51:5867–5880

    Article  CAS  Google Scholar 

  37. Lee S-W, Belcher AM (2004) Virus-based fabrication of micro- and nanofibers using electrospinning. Nano Lett 4:387–390

    Article  CAS  Google Scholar 

  38. Chung W-J, Kwon K-Y, Song J, Lee S-W (2011) Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals. Langmuir 27:7620–7628

    Article  CAS  PubMed  Google Scholar 

  39. Yoo SY, Kobayashi M, Lee PP, Lee SW (2011) Early osteogenic differentiation of mouse preosteoblasts induced by collagen-derived DGEA-peptide on nanofibrous phage tissue matrices. Biomacromolecules 12:987–996

    Article  CAS  PubMed  Google Scholar 

  40. Merzlyak A, Indrakanti S, Lee SW (2009) Genetically engineered nanofiber-like viruses for tissue regenerating materials. Nano Lett 9:846–852

    Article  CAS  PubMed  Google Scholar 

  41. Chung WJ, Merzlyak A, Yoo SY, Lee SW (2010) Genetically engineered liquid-crystalline viral films for directing neural cell growth. Langmuir 26:9885–9890

    Article  CAS  PubMed  Google Scholar 

  42. Tom S, Jin H-E, Heo K, Lee S-W (2016) Engineered phage films as scaffolds for CaCO 3 biomineralization. Nanoscale 8:15696–15701

    Article  CAS  PubMed  Google Scholar 

  43. Jin HE, Farr R, Lee SW (2014) Collagen mimetic peptide engineered M13 bacteriophage for collagen targeting and imaging in cancer. Biomaterials 35:9236–9245

    Article  CAS  PubMed  Google Scholar 

  44. Yoo SY et al (2016) M13 bacteriophage and adeno-associated virus hybrid for novel tissue engineering material with gene delivery functions. Adv Healthc Mater 5:88–93

    Article  CAS  PubMed  Google Scholar 

  45. YoungáYoo S (2011) Facile growth factor immobilization platform based on engineered phage matrices. Soft Matter 7:1660–1666

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported under the framework of international cooperation program managed by the National Research Foundation of Korea (NRF-2016K2A9A1A01951919). H.-E.J. was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1C1B1008824). We acknowledge funding support from the Tsinghua-Berkeley Shenzhen Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo-Eon Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jin, HE., Lee, SW. (2018). Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_32

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics