Skip to main content

Next-Generation DNA Sequencing of VH/VL Repertoires: A Primer and Guide to Applications in Single-Domain Antibody Discovery

  • Protocol
  • First Online:
Phage Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1701))

Abstract

Immunogenetic analyses of expressed antibody repertoires are becoming increasingly common experimental investigations and are critical to furthering our understanding of autoimmunity, infectious disease, and cancer. Next-generation DNA sequencing (NGS) technologies have now made it possible to interrogate antibody repertoires to unprecedented depths, typically by sequencing of cDNAs encoding immunoglobulin variable domains. In this chapter, we describe simple, fast, and reliable methods for producing and sequencing multiplex PCR amplicons derived from the variable regions (VH, VHH or VL) of rearranged immunoglobulin heavy and light chain genes using the Illumina MiSeq platform. We include complete protocols and primer sets for amplicon sequencing of VH/VHH/VL repertoires directly from human, mouse, and llama lymphocytes as well as from phage-displayed VH/VHH/VL libraries; these can be easily be adapted to other types of amplicons with little modification. The resulting amplicons are diverse and representative, even using as few as 103 input B cells, and their generation is relatively inexpensive, requiring no special equipment and only a limited set of primers. In the absence of heavy-light chain pairing, single-domain antibodies are uniquely amenable to NGS analyses. We present a number of applications of NGS technology useful in discovery of single-domain antibodies from phage display libraries, including: (i) assessment of library functionality; (ii) confirmation of desired library randomization; (iii) estimation of library diversity; and (iv) monitoring the progress of panning experiments. While the case studies presented here are of phage-displayed single-domain antibody libraries, the principles extend to other types of in vitro display libraries.

This is National Research Council Canada Publication Number: 53333.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kabat EA, Wu TT (1991) Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of VH and VL genes, minigenes, and complementarity-determining regions to binding of antibody-combining sites. J Immunol 147:1709–1719

    CAS  PubMed  Google Scholar 

  2. Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  CAS  PubMed  Google Scholar 

  3. Greenberg AS, Avila D, Hughes M et al (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374:168–173

    Article  CAS  PubMed  Google Scholar 

  4. Davies J, Riechmann L (1995) Antibody VH domains as small recognition units. Biotechnology (N Y) 13:475–479

    Article  CAS  Google Scholar 

  5. Ward ES, Gussow D, Griffiths AD et al (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341:544–546

    Article  CAS  PubMed  Google Scholar 

  6. Bradbury AR, Sidhu S, Dubel S et al (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jung D, Giallourakis C, Mostoslavsky R et al (2006) Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 24:541–570

    Article  CAS  PubMed  Google Scholar 

  8. Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22

    Article  PubMed  Google Scholar 

  9. Glanville J, Kuo TC, von Budingen HC et al (2011) Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation. Proc Natl Acad Sci U S A 108:20066–20071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khan TA, Friedensohn S, Gorter de Vries AR et al (2016) Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting. Sci Adv 2:e1501371

    Article  PubMed  PubMed Central  Google Scholar 

  11. Briney BS, Willis JR, Crowe JE Jr (2012) Location and length distribution of somatic hypermutation-associated DNA insertions and deletions reveals regions of antibody structural plasticity. Genes Immun 13:523–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reddy ST, Ge X, Miklos AE, Hughes RA et al (2010) Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat Biotechnol 28:965–969

    Article  CAS  PubMed  Google Scholar 

  13. Liao HX, Lynch R, Zhou T et al (2013) Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496:469–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen W, Prabakaran P, Zhu Z et al (2012) Characterization of human IgG repertoires in an acute HIV-1 infection. Exp Mol Pathol 93:399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Busse CE, Czogiel I, Braun P et al (2014) Single-cell based high-throughput sequencing of full-length immunoglobulin heavy and light chain genes. Eur J Immunol 44:597–603

    Article  CAS  PubMed  Google Scholar 

  16. DeKosky BJ, Ippolito GC, Deschner RP et al (2013) High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat Biotechnol 31:166–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Dongen JJ, Langerak AW, Bruggemann M et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17:2257–2317

    Article  PubMed  Google Scholar 

  18. He L, Sok D, Azadnia P et al (2014) Toward a more accurate view of human B-cell repertoire by next-generation sequencing, unbiased repertoire capture and single-molecule barcoding. Sci Rep 4:6778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rohatgi S, Ganju P, Sehgal D (2008) Systematic design and testing of nested (RT-)PCR primers for specific amplification of mouse rearranged/expressed immunoglobulin variable region genes from small number of B cells. J Immunol Methods 339:205–219

    Article  CAS  PubMed  Google Scholar 

  20. Baral TN, MacKenzie R, Arbabi Ghahroudi M (2013) Single-domain antibodies and their utility. Curr Protoc Immunol 103:Unit 2.17

    Google Scholar 

  21. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  22. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hussack G, Arbabi-Ghahroudi M, van Faassen H et al (2011) Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J Biol Chem 286:8961–8976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hussack G, Keklikian A, Alsughayyir J et al (2012) A VL single-domain antibody library shows a high-propensity to yield non-aggregating binders. Protein Eng Des Sel 25:313–318

    Article  CAS  PubMed  Google Scholar 

  26. Arbabi-Ghahroudi M, To R, Gaudette N et al (2009) Aggregation-resistant VHs selected by in vitro evolution tend to have disulfide-bonded loops and acidic isoelectric points. Protein Eng Des Sel 22:59–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Research Council of Canada and by a CIHR doctoral research award (KAH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Henry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Henry, K.A. (2018). Next-Generation DNA Sequencing of VH/VL Repertoires: A Primer and Guide to Applications in Single-Domain Antibody Discovery. In: Hust, M., Lim, T. (eds) Phage Display. Methods in Molecular Biology, vol 1701. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7447-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7447-4_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7446-7

  • Online ISBN: 978-1-4939-7447-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics