Skip to main content

Tau Interaction with Tubulin and Microtubules: From Purified Proteins to Cells

  • Protocol
  • First Online:
Tau Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1523))

Abstract

Microtubules (MTs) play an important role in many cellular processes and are dynamic structures regulated by an important network of microtubules-associated proteins, MAPs, such as Tau. Tau has been discovered as an essential factor for MTs formation in vitro, and its region implicated in binding to MTs has been identified. By contrast, the affinity, the stoichiometry, and the topology of Tau–MTs interaction remain controversial. Indeed, depending on the experiment conditions a wide range of values have been obtained. In this chapter, we focus on three biophysical methods, turbidimetry, cosedimentation assay, and Förster Resonance Energy Transfer to study Tau–tubulin interaction both in vitro and in cell. We highlight precautions that must be taken in order to avoid pitfalls and we detail the nature of the conclusions that can be drawn from these methods about Tau–tubulin interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  PubMed  Google Scholar 

  2. Bhat KM, Setaluri V (2007) Microtubule-associated proteins as targets in cancer chemotherapy. Clin Cancer Res 13:2849–2854

    Article  CAS  PubMed  Google Scholar 

  3. Weingarten MD, Lockwood AH, Hwo SY et al (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72:1858–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tilney LG, Bryan J, Bush DJ et al (1973) Microtubules: evidence for 13 protofilaments. J Cell Biol 59:267–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chrétien D, Wade RH (1991) New data on the microtubule surface lattice. Biol Cell 71:161–174

    Article  PubMed  Google Scholar 

  6. Wade RH (2007) Microtubules: an overview. Methods Mol Med 137:1–16

    Article  CAS  PubMed  Google Scholar 

  7. Weisenberg RC, Timasheff SN (1970) Aggregation of microtubule subunit protein. Effects of divalent cations, colchicine and vinblastine. Biochemistry 9:4110–4116

    Article  CAS  PubMed  Google Scholar 

  8. Frigon RP, Timasheff SN (1975a) Magnesium-induced self-association of calf brain tubulin. I. Stoichiometry. Biochemistry 14:4559–4566

    Google Scholar 

  9. Frigon RP, Timasheff SN (1975b) Magnesium-induced self-association of calf brain tubulin. II. Thermodynamics. Biochemistry 14:4567–4573

    Google Scholar 

  10. Mandelkow EM, Mandelkow E, Milligan RA (1991) Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J Cell Biol 114:977–991

    Article  CAS  PubMed  Google Scholar 

  11. Müller-Reichert T, Chrétien D, Severin F, Hyman AA (1998) Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha, beta)methylenediphosphonate. Proc Natl Acad Sci U S A 95:3661–3666

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brouhard GJ, Rice LM (2014) The contribution of αβ-tubulin curvature to microtubule dynamics. J Cell Biol 207:323–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Himmler A, Drechsel D, Kirschner MW, Martin DW Jr (1989) Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol 9:1381–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Butner KA, Kirschner MW (1991) Tau protein binds to microtubules through a flexible array of disturbed weak sites. J Cell Biol 115:717–730

    Article  CAS  PubMed  Google Scholar 

  15. Goode BL, Feinstein SC (1994) Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. J Cell Biol 124:769–782

    Article  CAS  PubMed  Google Scholar 

  16. Gustke N, Trinczek B, Biernat J et al (1994) Domains of tau protein and interactions with microtubules. Biochemistry 33:9511–9522

    Article  CAS  PubMed  Google Scholar 

  17. Sillen A, Barbier P, Landrieu I et al (2007) NMR investigation of the interaction between the neuronal protein tau and the microtubules. Biochemistry 46:3055–3064

    Article  CAS  PubMed  Google Scholar 

  18. Devred F, Barbier P, Lafitte D et al (2010) Microtubule and MAPs: thermodynamics of complex formation by AUC, ITC, fluorescence, and NMR. Methods Cell Biol 95:449–480

    Article  CAS  PubMed  Google Scholar 

  19. Tsvetkov PO, Makarov AA, Malesinski S et al (2012) New insights into tau-microtubules interaction revealed by isothermal titration calorimetry. Biochimie 94:916–919

    Article  CAS  PubMed  Google Scholar 

  20. Tsvetkov PO, Barbier P, Breuzard G et al (2013) Microtubule-associated proteins and tubulin interaction by isothermal titration calorimetry. Methods Cell Biol 115:283–302

    Article  CAS  PubMed  Google Scholar 

  21. Goedert M, Wischik CM, Crowther RA et al (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 85:4051–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dompierre JP, Godin JD, Charrin BC et al (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27:3571–3583

    Article  CAS  PubMed  Google Scholar 

  23. Rasband W (1997–2007) ImageJ. US National Institutes of Health, Bethesda, MA, http://rsb.info.nih.gov/ij/plugins.html

  24. Feige JN, Sage D, Wahli W et al (2005) PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc Res Tech 68:51–58

    Article  CAS  PubMed  Google Scholar 

  25. Oosawa F, Asakura S (1975) Thermodynamics of the polymerization of protein. Academic, London

    Google Scholar 

  26. Devred F, Douillard S, Briand C, Peyrot V (2002) First tau repeat domain to growing and taxol-stabilized microtubules, and serine 262 residue phosphorylation. FEBS Lett 523:247–251

    Article  CAS  PubMed  Google Scholar 

  27. Weis F, Moullintraffort L, Heichette C et al (2010) The 90-kDa heat shock protein Hsp90 protects tubulin against thermal denaturation. J Biol Chem 285:9525–9534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Devred F, Barbier P, Douillard S et al (2004) Tau induces ring and microtubule formation from alphabeta-tubulin dimers under nonassembly conditions. Biochemistry 43:10520–10531

    Article  CAS  PubMed  Google Scholar 

  29. Buey RM, Diaz JF, Andreu JM et al (2004) Interaction of epothilone analogues with the paclitaxel binding site: relationship between binding affinity, microtubule stabilization, and cytotoxicity. Chem Biol 11:225–236

    CAS  PubMed  Google Scholar 

  30. Breuzard G, Hubert P, Nouar R et al (2013) Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells. J Cell Sci 126:2810–2819

    Article  CAS  PubMed  Google Scholar 

  31. Wouters FS, Verveer PJ, Bastiaens PI (2001) Imaging biochemistry inside cells. Trends Cell Biol 11:203–211

    Article  CAS  PubMed  Google Scholar 

  32. Gordon GW, Berry G, Liang XH et al (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xia Z, Liu Y (2001) Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 81:2395–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Youvan DC, Silva CM, Bilina E et al (1997) Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on nickel chelating beads. Biotechnology 3:1–18

    Google Scholar 

  35. Gonzales RC, Woods RE (2007) Digital image processing, 3rd edn. Pearson Education, Upper Saddle River, NJ

    Google Scholar 

  36. Pratt WK (2006) Digital image processing, 4th edn. Wiley-Interscience, New York, NY

    Google Scholar 

  37. Siegel RM, Chan FK, Zacharias DA et al (2000) Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Sci STKE 38:1

    Google Scholar 

  38. Nouar R, Devred F, Breuzard G, Peyrot V (2013) FRET and FRAP imaging: approaches to characterise tau and stathmin interactions with microtubules in cells. Biol Cell 105:149–161

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Barbier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

De Bessa, T., Breuzard, G., Allegro, D., Devred, F., Peyrot, V., Barbier, P. (2017). Tau Interaction with Tubulin and Microtubules: From Purified Proteins to Cells. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 1523. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6598-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6598-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6596-0

  • Online ISBN: 978-1-4939-6598-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics