Skip to main content

Image-Based Analysis of Intracellular Tau Aggregation by Using Tau-BiFC Cell Model

  • Protocol
  • First Online:
Tau Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1523))

Abstract

Abnormal tau aggregation is a pathological hallmark of neurodegenerative disease classified as tauopathy. Preventing tau aggregation becomes an important therapeutic strategy to cure tau-mediated neurodegeneration. Here, we describe a method to investigate intracellular tau aggregation by using a recently developed tau aggregation cell-based model named tau-BiFC. High-throughput and high-contents screening method for quantifying intracellular tau aggregation would expedite the discovery of drugs that inhibit tau aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy PH (2011) Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Res 1415:136–148. doi:10.1016/j.brainres.2011.07.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13. doi:10.1186/1750-1326-4-13

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mukrasch MD, Biernat J, von Bergen M, Griesinger C, Mandelkow E, Zweckstetter M (2005) Sites of tau important for aggregation populate {beta}-structure and bind to microtubules and polyanions. J Biol Chem 280:24978–24986. doi:10.1074/jbc.M501565200

    Article  CAS  PubMed  Google Scholar 

  4. Johnson GV, Hartigan JA (1999) Tau protein in normal and Alzheimer’s disease brain: an update. J Alzheimers Dis 1:329–351

    CAS  PubMed  Google Scholar 

  5. Buée-Scherrer V, Buée L, Leveugle B, Perl DP, Vermersch P, Hof PR, Delacourte A (1997) Pathological tau proteins in postencephalitic parkinsonism: comparison with Alzheimer’s disease and other neurodegenerative disorders. Ann Neurol 42:356–359. doi:10.1002/ana.410420312

    Article  PubMed  Google Scholar 

  6. Buée Scherrer V, Hof PR, Buée L, Leveugle B, Vermersch P, Perl DP, Olanow CW, Delacourte A (1996) Hyperphosphorylated tau proteins differentiate corticobasal degeneration and Pick’s disease. Acta Neuropathol 91:351–359

    Article  PubMed  Google Scholar 

  7. Brandt R, Hundelt M, Shahani N (2005) Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim Biophys Acta 1739:331–354. doi:10.1016/j.bbadis.2004.06.018

    Article  CAS  PubMed  Google Scholar 

  8. Han DH, Na H-K, Choi WH, Lee JH, Kim YK, Won C, Lee S-H, Kim KP, Kuret J, Min D-H, Lee MJ (2014) Direct cellular delivery of human proteasomes to delay tau aggregation. Nat Commun 5:5633. doi:10.1038/ncomms6633

    Article  CAS  PubMed  Google Scholar 

  9. Lim S, Haque MM, Nam G, Ryoo N, Rhim H, Kim YK (2015) Monitoring of Intracellular Tau Aggregation Regulated by OGA/OGT Inhibitors. Int J Mol Sci 16:20212–20224. doi:10.3390/ijms160920212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tak H, Haque MM, Kim MJ, Lee JH, Baik J-H, Kim Y, Kim DJ, Grailhe R, Kim YK (2013) Bimolecular fluorescence complementation; lighting-up tau-tau interaction in living cells. PLoS One 8:e81682. doi:10.1371/journal.pone.0081682

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim D, Lim S, Haque MM, Ryoo N, Hong HS, Rhim H, Lee D-E, Chang Y-T, Lee J-S, Cheong E, Kim DJ, Kim YK (2015) Identification of disulfide cross-linked tau dimer responsible for tau propagation. Sci Rep 5:15231. doi:10.1038/srep15231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Strober, W. (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol Ed John E Coligan Al Appendix 3, Appendix 3B. doi: 10.1002/0471142735.ima03bs21

Download references

Acknowledgment

This work was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) (No. CRC-15-04-KIST) and the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016M3C7A1913845).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Kyung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lim, S., Kim, D., Kim, D.J., Kim, Y.K. (2017). Image-Based Analysis of Intracellular Tau Aggregation by Using Tau-BiFC Cell Model. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 1523. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6598-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6598-4_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6596-0

  • Online ISBN: 978-1-4939-6598-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics