Skip to main content

DNA Microarray-Based Diagnostics

  • Protocol
Microarray Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1368))

Abstract

The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.

Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.

In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  2. Alizadeh AA et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  CAS  PubMed  Google Scholar 

  3. Shaw-Smith C (2004) Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41:241–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Storhoff JJ et al (2004) Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosens Bioelectron 19:875–883

    Article  CAS  PubMed  Google Scholar 

  5. Dupuy A, Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99:147–157

    Article  PubMed  Google Scholar 

  6. Simon R, Radmacher MD, Dobbin K, McShane LM (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95:14–18

    Article  CAS  PubMed  Google Scholar 

  7. Jordan BR (2010) Is there a niche for DNA microarrays in molecular diagnostics? Expert Rev Mol Diagn 10:875–882

    Article  CAS  PubMed  Google Scholar 

  8. Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492

    Article  CAS  PubMed  Google Scholar 

  9. Brazma A et al (2001) Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 29:365–371

    Article  CAS  PubMed  Google Scholar 

  10. Chen JJ, Hsueh H-M, Delongchamp RR, Lin C-J, Tsai C-A (2007) Reproducibility of microarray data: a further analysis of microarray quality control (MAQC) data. BMC Bioinformatics 8:412

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wang L, Li PC (2011) Microfluidic DNA microarray analysis: a review. Anal Chim Acta 687:12–27

    Article  CAS  PubMed  Google Scholar 

  12. Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5:591–596

    Article  CAS  PubMed  Google Scholar 

  13. Wang WU, Chen C, Lin K, Fang Y, Lieber CM (2005) Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc Natl Acad Sci U S A 102:3208–3212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Crespi A et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173

    Article  CAS  PubMed  Google Scholar 

  15. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  16. Sedighi A, Wang L, Li PCH (2013) 2D nanofluidic bioarray for nucleic acid analysis. In: Iniewski K, Selimovic S (eds) Nanopatterning and nanoscale devices for biological applications. Taylor & Francis, CRC press, Boca Raton, pp 183–205

    Google Scholar 

  17. Hong J, Edel JB, deMello AJ (2009) Micro- and nanofluidic systems for high-throughput biological screening. Drug Discov Today 14:134–146

    Article  CAS  PubMed  Google Scholar 

  18. Lagarde AE (2003) DNA microarrays: a molecular cloning manual. Am J Hum Genet 73:218

    Article  PubMed Central  CAS  Google Scholar 

  19. Liu J, Williams BA, Gwirtz RM, Wold BJ, Quake S (2006) Enhanced signals and fast nucleic acid hybridization by microfluidic chaotic mixing. Angew Chem Int Ed 45:3618–3623

    Article  CAS  Google Scholar 

  20. Peytavi R (2005) Microfluidic device for rapid (<15 min) automated microarray hybridization. Clin Chem 51:1836–1844

    Article  CAS  PubMed  Google Scholar 

  21. Campàs M, Katakis I (2004) DNA biochip arraying, detection and amplification strategies. Trends Anal Chem 23:49–62

    Article  Google Scholar 

  22. Lee HJ, Goodrich TT, Corn RM (2001) SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal Chem 73:5525–5531

    Article  CAS  Google Scholar 

  23. Situma C et al (2005) Fabrication of DNA microarrays onto poly(methyl methacrylate) with ultraviolet patterning and microfluidics for the detection of low-abundant point mutations. Anal Biochem 340:123–135

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Li PCH (2007) Flexible microarray construction and fast DNA hybridization conducted on a microfluidic chip for greenhouse plant fungal pathogen detection. J Agric Food Chem 55:10509–10516

    Article  CAS  PubMed  Google Scholar 

  25. Sedighi A, Li PC (2013) Gold nanoparticle assists SNP detection at room temperature in the nanoBioArray chip. Int J Mat Sci Eng 1(1):45–49

    Google Scholar 

  26. Bouchie A (2002) Organic farmers sue GMO producers. Nat Biotechnol 20:210

    Article  CAS  PubMed  Google Scholar 

  27. Meneses-Lorente G et al (2003) An evaluation of a low-density DNA microarray using cytochrome P450 inducers. Chem Res Toxicol 16:1070–1077

    Article  CAS  PubMed  Google Scholar 

  28. Sedighi A, Li PCH (2014) Kras gene codon 12 mutation detection enabled by gold nanoparticles conducted in a nanobioarray chip. Anal Biochem 448:58–64

    Article  CAS  PubMed  Google Scholar 

  29. Sedighi A, Li PCH, Pekcevik IC, Gates BD (2014) A proposed mechanism of the influence of gold nanoparticles on DNA hybridization. ACS Nano 8:6765–6777

    Article  CAS  PubMed  Google Scholar 

  30. Chen B et al (2011) Rapid screening of phenylketonuria using a CD microfluidic device. J Chromatogr A 1218:1907–1912

    Article  CAS  PubMed  Google Scholar 

  31. Peng XY (Larry), Li PCH, Yu H-Z, Parameswaran M (Ash), Chou WL (Jacky) (2007) Spiral microchannels on a CD for DNA hybridizations. Sens Actuators B Chem 128:64–69

    Google Scholar 

  32. Peng XY, Li PCH (2008) Centrifugal pumping in the equiforce spiral microchannel. Can J Pure App Sci 2:551–556

    Google Scholar 

  33. Wang L, Kropinski M-C, Li PCH (2011) Analysis and modeling of flow in rotating spiral microchannels: towards math-aided design of microfluidic systems using centrifugal pumping. Lab Chip 11:2097

    Article  CAS  PubMed  Google Scholar 

  34. Wang L, Li PCH, Yu H-Z, Parameswaran AM (2008) Fungal pathogenic nucleic acid detection achieved with a microfluidic microarray device. Anal Chim Acta 610:97–104

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Li PCH (2010) Optimization of a microfluidic microarray device for the fast discrimination of fungal pathogenic DNA. Anal Biochem 400:282–288

    Article  CAS  PubMed  Google Scholar 

  36. Chen H, Wang L, Li PCH (2008) Nucleic acid microarrays created in the double-spiral format on a circular microfluidic disk. Lab Chip 8:826

    Article  CAS  PubMed  Google Scholar 

  37. Epstein JR, Biran I, Walt DR (2002) Fluorescence-based nucleic acid detection and microarrays. Anal Chim Acta 469:3–36

    Article  CAS  Google Scholar 

  38. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139

    Article  CAS  PubMed  Google Scholar 

  39. Fang X, Liu X, Schuster S, Tan W (1999) Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. J Am Chem Soc 121:2921–2922

    Article  CAS  Google Scholar 

  40. Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73:1–7

    Article  CAS  PubMed  Google Scholar 

  41. Koehne J et al (2003) Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology 14:1239

    Article  CAS  PubMed  Google Scholar 

  42. Lee K et al (2013) Label-free DNA microarray bioassays using a near-field scanning microwavemicroscope. Biosens Bioelectron 42:326–331

    Article  CAS  PubMed  Google Scholar 

  43. Özkumur E et al (2010) Label-free microarray imaging for direct detection of DNA hybridization and single-nucleotide mismatches. Biosens Bioelectron 25:1789–1795

    Article  PubMed Central  PubMed  Google Scholar 

  44. Tsarfati-BarAd I, Sauer U, Preininger C, Gheber LA (2011) Miniaturized protein arrays: model and experiment. Biosens Bioelectron 26:3774–3781

    Article  CAS  PubMed  Google Scholar 

  45. Xu S, Miller S, Laibinis PE, Liu G (1999) Fabrication of nanometer scale patterns within self-assembled monolayers by nanografting. Langmuir 15:7244–7251

    Article  CAS  Google Scholar 

  46. Demers LM et al (2002) Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296:1836–1838

    Article  CAS  PubMed  Google Scholar 

  47. Truskett VN, Watts MPC (2006) Trends in imprint lithography for biological applications. Trends Biotechnol 24:312–317

    Article  CAS  PubMed  Google Scholar 

  48. Moorcroft MJ et al (2005) In situ oligonucleotide synthesis on poly(dimethylsiloxane): a flexible substrate for microarray fabrication. Nucleic Acids Res 33:e75

    Article  PubMed Central  PubMed  Google Scholar 

  49. Yu AA et al (2005) Supramolecular nanostamping: using DNA as movable type. Nano Lett 5:1061–1064

    Article  CAS  PubMed  Google Scholar 

  50. Lin H, Sun L, Crooks RM (2005) Replication of a DNA microarray. J Am Chem Soc 127:11210–11211

    Article  CAS  PubMed  Google Scholar 

  51. Akbulut O et al (2007) Application of supramolecular nanostamping to the replication of DNA nanoarrays. Nano Lett 7:3493–3498

    Article  CAS  PubMed  Google Scholar 

  52. Anderson RC, Su X, Bogdan GJ, Fenton J (2000) A miniature integrated device for automated multistep genetic assays. Nucleic Acids Res 28:e60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76:1824–1831

    Article  CAS  PubMed  Google Scholar 

  54. Trau D et al (2002) Nanoencapsulated microcrystalline particles for superamplified biochemical assays. Anal Chem 74:5480–5486

    Article  CAS  PubMed  Google Scholar 

  55. Lee TM-H, Carles MC, Hsing I-M (2003) Microfabricated PCR-electrochemical device for simultaneous DNA amplification and detection. Lab Chip 3:100–105

    Article  CAS  PubMed  Google Scholar 

  56. Yeung S-W, Lee TM-H, Cai H, Hsing I-M (2006) A DNA biochip for on-the-spot multiplexed pathogen identification. Nucleic Acids Res 34:e118

    Article  PubMed Central  PubMed  Google Scholar 

  57. Liu RH et al (2006) Fully integrated miniature device for automated gene expression DNA microarray processing. Anal Chem 78:1980–1986

    Article  CAS  PubMed  Google Scholar 

  58. Choi JY et al (2012) An integrated allele-specific polymerase chain reaction-microarray chip for multiplex single nucleotide polymorphism typing. Lab Chip 12:5146–5154

    Article  CAS  PubMed  Google Scholar 

  59. Simon R (2008) Lost in translation: problems and pitfalls in translating laboratory observations to clinical utility. Eur J Cancer 44:2707–2713

    Article  PubMed Central  PubMed  Google Scholar 

  60. Van De Vijver MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  61. Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  62. Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151

    Article  CAS  PubMed  Google Scholar 

  63. Molecular Diagnostics Market & Forecast (By Application, Technology, Countries, Companies & Clinical Trials) to 2017: Global Analysis, ReportLinker (2013) http://www.reportlinker.com/p01158111-summary/Molecular-Diagnostics-Market-Forecast-By-Application-Technology-Countries-Companies-Clinical-Trials-to-Global-Analysis.html

  64. Ledford H (2008) The death of microarrays? Nat News 455:847

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. H. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marzancola, M.G., Sedighi, A., Li, P.C.H. (2016). DNA Microarray-Based Diagnostics. In: Li, P., Sedighi, A., Wang, L. (eds) Microarray Technology. Methods in Molecular Biology, vol 1368. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3136-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3136-1_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3135-4

  • Online ISBN: 978-1-4939-3136-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics