Skip to main content

A General ANN-Based Multitasking Model for the Discovery of Potent and Safer Antibacterial Agents

  • Protocol
  • First Online:
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1260))

Abstract

Bacteria have been one of the world’s most dangerous and deadliest pathogens for mankind, nowadays giving rise to significant public health concerns. Given the prevalence of these microbial pathogens and their increasing resistance to existing antibiotics, there is a pressing need for new antibacterial drugs. However, development of a successful drug is a complex, costly, and time-consuming process. Quantitative Structure-Activity Relationships (QSAR)-based approaches are valuable tools for shortening the time of lead compound identification but also for focusing and limiting time-costly synthetic activities and in vitro/vivo evaluations. QSAR-based approaches, supported by powerful statistical techniques such as artificial neural networks (ANNs), have evolved to the point of integrating dissimilar types of chemical and biological data. This chapter reports an overview of the current research and potential applications of QSAR modeling tools toward the rational design of more efficient antibacterial agents. Particular emphasis is given to the setup of multitasking models along with ANNs aimed at jointly predicting different antibacterial activities and safety profiles of drugs/chemicals under diverse experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grayson ML, Crowe SM et al (eds) (2010) Kucers’ the use of antibiotics. A clinical review of antibacterial, antifungal, antiparasitic, and antiviral drugs, 6th edn. CRC Press, Taylor & Francis Group, LLC, Boca Raton, FL

    Google Scholar 

  2. Shatalin K, Shatalina E et al (2011) H2S: a universal defense against antibiotics in bacteria. Science 334:986–990

    Article  CAS  PubMed  Google Scholar 

  3. Cordero OX, Wildschutte H et al (2012) Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337:1228–1231

    Article  CAS  PubMed  Google Scholar 

  4. Rossolini GM, Mantengoli E (2008) Antimicrobial resistance in Europe and its potential impact on empirical therapy. Clin Microbiol Infect 14(Suppl 6):2–8

    Article  PubMed  Google Scholar 

  5. Gonzales R, Corbett KK et al (2008) Drug resistant infections in poor countries: a shrinking window of opportunity. BMJ 336:948–949

    Article  PubMed Central  PubMed  Google Scholar 

  6. Lautenbach E, Abrutyn E (2009) Healthcare-acquired bacterial infections. In: Brachman PS, Abrutyn E (eds) Bacterial infections of humans: epidemiology and control, 4th edn. Springer Science + Business Media, LLC, New York, NY, pp 543–575

    Chapter  Google Scholar 

  7. Rigottier-Gois L, Alberti A et al (2011) Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors. PLoS One 6:e29023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Tenover FC, McGowan JE Jr (2009) The epidemiology of bacterial resistance to antimicrobial agents. In: Brachman PS, Abrutyn E (eds) Bacterial infections of humans: epidemiology and control, 4th edn. Springer Science + Business Media, LLC, New York, NY, pp 91–104

    Chapter  Google Scholar 

  9. Feuerriegel S, Oberhauser B et al (2012) Sequence analysis for detection of first-line drug resistance in Mycobacterium tuberculosis strains from a high-incidence setting. BMC Microbiol 12:90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lienhardt C, Glaziou P et al (2012) Global tuberculosis control: lessons learnt and future prospects. Nat Rev Microbiol 10:407–416

    CAS  PubMed  Google Scholar 

  11. Hann MM, Oprea TI (2004) Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol 8:255–263

    Article  CAS  PubMed  Google Scholar 

  12. Lazo JS, Wipf P (2000) Combinatorial chemistry and contemporary pharmacology. J Pharmacol Exp Ther 293:705–709

    CAS  PubMed  Google Scholar 

  13. Bleicher KH, Bohm HJ et al (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2:369–378

    Article  CAS  PubMed  Google Scholar 

  14. Hansch C, Leo A (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC

    Google Scholar 

  15. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813–1818

    Article  CAS  PubMed  Google Scholar 

  16. Oprea T (2005) Chemoinformatics in drug discovery. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  17. Brown N, Lewis RA (2006) Exploiting QSAR methods in lead optimization. Curr Opin Drug Discov Devel 9:419–424

    CAS  PubMed  Google Scholar 

  18. Borchardt RT, Kerns EH et al (eds) (2006) Optimizing the “drug-like” properties of leads in drug discovery. Springer Science + Business Media, LLC, New York, NY

    Google Scholar 

  19. Croes S, Koop AH et al (2012) Efficacy, nephrotoxicity and ototoxicity of aminoglycosides, mathematically modelled for modelling-supported therapeutic drug monitoring. Eur J Pharm Sci 45:90–100

    Article  CAS  PubMed  Google Scholar 

  20. Hau J, Schapiro SJ (2011) Handbook of laboratory animal science: essential principles and practices. CRC Press, Taylor & Francis Group, LLC, Boca Raton, FL

    Google Scholar 

  21. Vina D, Uriarte E et al (2009) Alignment-free prediction of a drug-target complex network based on parameters of drug connectivity and protein sequence of receptors. Mol Pharm 6:825–835

    Article  CAS  PubMed  Google Scholar 

  22. Prado-Prado FJ, Garcia-Mera X et al (2010) Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species. Bioorg Med Chem 18:2225–2231

    Article  CAS  PubMed  Google Scholar 

  23. Garcia I, Fall Y et al (2011) First computational chemistry multi-target model for anti-Alzheimer, anti-parasitic, anti-fungi, and anti-bacterial activity of GSK-3 inhibitors in vitro, in vivo, and in different cellular lines. Mol Divers 15:561–567

    Article  CAS  PubMed  Google Scholar 

  24. Speck-Planche A, Kleandrova VV et al (2012) Fragment-based approach for the in silico discovery of multi-target insecticides. Chemometr Intell Lab Syst 111:39–45

    Article  CAS  Google Scholar 

  25. Speck-Planche A, Kleandrova VV et al (2012) In silico discovery and virtual screening of multi-target inhibitors for proteins in Mycobacterium tuberculosis. Comb Chem High Throughput Screen 15:666–673

    Article  CAS  PubMed  Google Scholar 

  26. Speck-Planche A, Kleandrova VV et al (2012) Chemoinformatics in anti-cancer chemotherapy: multi-target QSAR model for the in silico discovery of anti-breast cancer agents. Eur J Pharm Sci 47:273–279

    Article  CAS  PubMed  Google Scholar 

  27. Speck Planche A, Cordeiro MNDS (2013) In Chemoinformatics in drug design. Artificial neural networks for simultaneous prediction of anti-enterococci activities and toxicological profiles. Proceedings of the 5th International joint conference on computational intelligence, NCTA-International conference on neural computation theory and applications, Vilamoura, Algarve, Portugal, 20–22 Sept, pp 458–465

    Google Scholar 

  28. Luan F, Cordeiro MNDS et al (2013) TOPS-MODE model of multiplexing neuroprotective effects of drugs and experimental-theoretic study of new 1,3-rasagiline derivatives potentially useful in neurodegenerative diseases. Bioorg Med Chem 21:1870–1879

    Article  CAS  PubMed  Google Scholar 

  29. Tenorio-Borroto E, Penuelas Rivas CG et al (2012) ANN multiplexing model of drugs effect on macrophages; theoretical and flow cytometry study on the cytotoxicity of the anti-microbial drug G1 in spleen. Bioorg Med Chem 20:6181–6194

    Article  CAS  PubMed  Google Scholar 

  30. Speck-Planche A, Kleandrova VV et al (2013) New insights toward the discovery of antibacterial agents: multi-tasking QSBER model for the simultaneous prediction of anti-tuberculosis activity and toxicological profiles of drugs. Eur J Pharm Sci 48:812–818

    Article  CAS  PubMed  Google Scholar 

  31. Speck-Planche A, Kleandrova VV et al (2013) Chemoinformatics for rational discovery of safe antibacterial drugs: simultaneous predictions of biological activity against streptococci and toxicological profiles in laboratory animals. Bioorg Med Chem 21:2727–2732

    Article  CAS  PubMed  Google Scholar 

  32. Speck-Planche A, Cordeiro MNDS (2013) Simultaneous modeling of antimycobacterial activities and ADMET profiles: a chemoinformatic approach to medicinal chemistry. Curr Top Med Chem 13:1656–1665

    Article  CAS  PubMed  Google Scholar 

  33. van de Waterbeemd H (1995) Chemometrics methods in molecular design. VCH Publishers, Weinheim

    Book  Google Scholar 

  34. Gaulton A, Bellis LJ et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Knox C, Law V et al (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Mok NY, Brenk R (2011) Mining the ChEMBL database: an efficient chemoinformatics workflow for assembling an ion channel-focused screening library. J Chem Inf Model 51:2449–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. WILEY-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  38. Kubinyi H (1993) QSAR: Hansch analysis and related approaches. VCH Publishers, Weinheim

    Book  Google Scholar 

  39. Kubinyi H, Folkers G et al (eds) (2002) 3D QSAR in drug design: recent advances. Kluwer Academic Publishers, New York

    Google Scholar 

  40. Klein CD, Hopfinger AJ (1998) Pharmacological activity and membrane interactions of antiarrhythmics: 4D-QSAR/QSPR analysis. Pharm Res 15:303–311

    Article  CAS  PubMed  Google Scholar 

  41. Vedani A, Dobler M (2002) 5D-QSAR: the key for simulating induced fit? J Med Chem 45:2139–2149

    Article  CAS  PubMed  Google Scholar 

  42. Vedani A, Dobler M et al (2005) Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. J Med Chem 48:3700–3703

    Article  CAS  PubMed  Google Scholar 

  43. Carloni P, Alber F (eds) (2003) Quantum medicinal chemistry. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  44. Li P, Yin J et al (2013) Synthesis, antibacterial activities, and 3D-QSAR of sulfone derivatives containing 1,3,4-oxadiazole moiety. Chem Biol Drug Des 82:546–556

    Article  CAS  PubMed  Google Scholar 

  45. Lu X, Lv M et al (2012) Pharmacophore and molecular docking guided 3D-QSAR study of bacterial enoyl-ACP reductase (FabI) inhibitors. Int J Mol Sci 13:6620–6638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Uddin R, Lodhi MU et al (2012) Combined pharmacophore and 3D-QSAR study on a series of Staphylococcus aureus Sortase A inhibitors. Chem Biol Drug Des 80:300–314

    Article  CAS  PubMed  Google Scholar 

  47. Bhonsle JB, Venugopal D et al (2007) Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. J Med Chem 50:6545–6553

    Article  CAS  PubMed  Google Scholar 

  48. Bucinski A et al (2004) Artificial neural networks for prediction of antibacterial activity in series of imidazole derivatives. Comb Chem High Throughput Screen 7:327–336

    Article  CAS  PubMed  Google Scholar 

  49. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  50. Estrada E, Matamala AR (2007) Generalized topological indices. Modeling gas-phase rate coefficients of atmospheric relevance. J Chem Inf Model 47:794–804

    Article  CAS  PubMed  Google Scholar 

  51. Estrada E, Uriarte E et al (2000) A novel approach for the virtual screening and rational design of anticancer compounds. J Med Chem 43:1975–1985

    Article  CAS  PubMed  Google Scholar 

  52. Roy K, Ghosh G (2004) QSTR with extended topochemical atom indices. 2. Fish toxicity of substituted benzenes. J Chem Inf Comput Sci 44:559–567

    Article  CAS  PubMed  Google Scholar 

  53. Roy K, Ghosh G (2008) QSTR with extended topochemical atom indices. 10. Modeling of toxicity of organic chemicals to humans using different chemometric tools. Chem Biol Drug Des 72:383–394

    Article  CAS  PubMed  Google Scholar 

  54. Castillo-Garit JA, Vega MC et al (2011) Ligand-based discovery of novel trypanosomicidal drug-like compounds: in silico identification and experimental support. Eur J Med Chem 46:3324–3330

    Article  CAS  PubMed  Google Scholar 

  55. Casañola-Martin GM, Marrero-Ponce Y et al (2010) Bond-based 2D quadratic fingerprints in QSAR studies: virtual and in vitro tyrosinase inhibitory activity elucidation. Chem Biol Drug Des 76:538–545

    Article  PubMed  Google Scholar 

  56. Barigye SJ, Marrero-Ponce Y et al (2013) Event-based criteria in GT-STAF information indices: theory, exploratory diversity analysis and QSPR applications. SAR QSAR Environ Res 24:3–34

    Article  CAS  PubMed  Google Scholar 

  57. Barigye SJ, Marrero-Ponce Y et al (2013) Relations frequency hypermatrices in mutual, conditional and joint entropy-based information indices. J Comput Chem 34:259–274

    Article  CAS  PubMed  Google Scholar 

  58. Vazquez-Prieto S, Gonzalez-Diaz H et al (2013) A QSPR-like model for multilocus genotype networks of Fasciola hepatica in Northwest Spain. J Theor Biol 343C:16–24

    Google Scholar 

  59. Alonso N, Caamano O et al (2013) Model for high-throughput screening of multi-target drugs in chemical neurosciences; synthesis, assay and theoretic study of rasagiline carbamates. ACS Chem Neurosci 4:1393–1403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Estrada E, Molina E et al (2001) Can 3D structural parameters be predicted from 2D (topological) molecular descriptors? J Chem Inf Comput Sci 41:1015–1021

    Article  CAS  PubMed  Google Scholar 

  61. Estrada E (2002) Physicochemical interpretation of molecular connectivity indices. J Phys Chem A 106:9085–9091

    Article  CAS  Google Scholar 

  62. Molina E, Diaz HG et al (2004) Designing antibacterial compounds through a topological substructural approach. J Chem Inf Comput Sci 44:515–521

    Article  CAS  PubMed  Google Scholar 

  63. Gonzalez-Diaz H, Torres-Gomez LA et al (2005) Markovian chemicals “in silico” design (MARCH-INSIDE), a promising approach for computer-aided molecular design III: 2.5D indices for the discovery of antibacterials. J Mol Model 11:116–123

    Article  CAS  PubMed  Google Scholar 

  64. Marrero-Ponce Y, Marrero RM et al (2006) Non-stochastic and stochastic linear indices of the molecular pseudograph’s atom-adjacency matrix: a novel approach for computational in silico screening and “rational” selection of new lead antibacterial agents. J Mol Model 12:255–271

    Article  CAS  PubMed  Google Scholar 

  65. Marrero-Ponce Y, Medina-Marrero R et al (2005) Atom, atom-type, and total nonstochastic and stochastic quadratic fingerprints: a promising approach for modeling of antibacterial activity. Bioorg Med Chem 13:2881–2899

    Article  CAS  PubMed  Google Scholar 

  66. Speck-Planche A, Scotti MT et al (2009) Design of novel antituberculosis compounds using graph-theoretical and substructural approaches. Mol Divers 13:445–458

    Article  Google Scholar 

  67. Estrada E (1996) Spectral moments of the edge adjacency matrix in molecular graphs. 1. Definition and applications for the prediction of physical properties of alkanes. J Chem Inf Comput Sci 36:844–849

    Article  CAS  Google Scholar 

  68. Estrada E (1997) Spectral moments of the edge adjacency matrix in molecular graphs. 2. Molecules containing heteroatoms and QSAR applications. J Chem Inf Comput Sci 37:320–328

    Article  CAS  Google Scholar 

  69. Estrada E (1998) Spectral moments of the edge adjacency matrix in molecular graphs. 3. Molecules containing cycles. J Chem Inf Comput Sci 38:23–27

    Article  CAS  Google Scholar 

  70. Estrada E, Gutiérrez Y (2002–2004) MODESLAB. v1.5, Santiago de Compostela

    Google Scholar 

  71. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474

    Article  CAS  PubMed  Google Scholar 

  72. Todeschini R, Lasagni M et al (1994) New molecular descriptors for 2D and 3D structures. Theory. J Chemometr 8:263–272

    Article  CAS  Google Scholar 

  73. Hill T, Lewicki P (2006) STATISTICS methods and applications. A comprehensive reference for science, industry and data mining. StatSoft, Tulsa

    Google Scholar 

  74. Suzuki K (ed) (2011) Artificial neural networks: methodological advances and biomedical applications. InTech, Rijeka

    Google Scholar 

  75. Sabet R, Fassihi A et al (2012) Computer-aided design of novel antibacterial 3-hydroxypyridine-4-ones: application of QSAR methods based on the MOLMAP approach. J Comput Aided Mol Des 26:349–361

    Article  CAS  PubMed  Google Scholar 

  76. Garcia-Domenech R, de Julian-Ortiz JV (1998) Antimicrobial activity characterization in a heterogeneous group of compounds. J Chem Inf Comput Sci 38:445–449

    Article  CAS  PubMed  Google Scholar 

  77. Lata S, Sharma BK et al (2007) Analysis and prediction of antibacterial peptides. BMC Bioinformatics 8:263

    Article  PubMed Central  PubMed  Google Scholar 

  78. Hall M, Frank E et al (2009) The WEKA data mining software: an update. SIGKDD Explor 11:10–18

    Article  Google Scholar 

  79. Hall M, Frank E et al (1999–2013) WEKA. Waikato Environment for Knowledge Analysis. v3.6.9, Hamilton

    Google Scholar 

  80. Witten IH, Frank E et al (2011) Data mining: practical machine learning tools and techniques. Morgan Kaufmann Publishers, Elsevier, Amsterdam

    Google Scholar 

  81. StatSoft (2001) STATISTICA 6.0. Data analysis software system

    Google Scholar 

  82. González-Díaz H, Pérez-Bello A et al (2007) Chemometrics for QSAR with low sequence homology: Mycobacterial promoter sequences recognition with 2D-RNA entropies. Chemometr Intell Lab Syst 85:20–26

    Article  Google Scholar 

  83. Hanczar B, Hua J et al (2010) Small-sample precision of ROC-related estimates. Bioinformatics 26:822–830

    Article  CAS  PubMed  Google Scholar 

  84. Sader HS, Biedenbach DJ et al (2012) Antimicrobial activity of the investigational pleuromutilin compound BC-3781 tested against Gram-positive organisms commonly associated with acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 56:1619–1623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

A. Speck-Planche acknowledges the Portuguese Fundação para a Ciência e a Tecnologia (FCT) and the European Social Fund for financial support (grant SFRH/BD/77690/2011). This work has been further supported by FCT through grant N° Pest-C/EQB/LA0006/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. D. S. Cordeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Speck-Planche, A., Cordeiro, M.N.D.S. (2015). A General ANN-Based Multitasking Model for the Discovery of Potent and Safer Antibacterial Agents. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 1260. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2239-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2239-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2238-3

  • Online ISBN: 978-1-4939-2239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics