Skip to main content

Jump Neural Network for Real-Time Prediction of Glucose Concentration

  • Protocol
  • First Online:
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1260))

Abstract

Prediction of the future value of a variable is of central importance in a wide variety of fields, including economy and finance, meteorology, informatics, and, last but not least important, medicine. For example, in the therapy of Type 1 Diabetes (T1D), in which, for patient safety, glucose concentration in the blood should be maintained in a defined normoglycemic range, the ability to forecast glucose concentration in the short-term (with a prediction horizon of around 30 min) might be sufficient to reduce the incidence of hypoglycemic and hyperglycemic events. Neural Network (NN) approaches are suitable for prediction purposes because of their ability to model nonlinear dynamics and handle in their inputs signals coming from different domains. In this chapter we illustrate the design of a jump NN glucose prediction algorithm that exploits past glucose concentration data, measured in real-time by a minimally invasive continuous glucose monitoring (CGM) sensor, and information on ingested carbohydrates, supplied by the patient himself or herself. The methodology is assessed by tuning the NN on data of ten T1D individuals and then testing it on a dataset of ten different subjects. Results with a prediction horizon of 30 min show that prediction of glucose concentration in T1D via NN is feasible and sufficiently accurate. The average time anticipation obtained is compatible with the generation of preventive hypoglycemic and hyperglycemic alerts and the improvement of artificial pancreas performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Gooijer J, Hyndman R (2006) 25 years of time series forecasting. Int J Forecasting 22(3):443–473

    Article  Google Scholar 

  2. Kruppa J, Ziegler A, Knig I (2012) Risk estimation and risk prediction using machine learning methods. Hum Genet 131(7):1–16

    Google Scholar 

  3. Iasemidis L (2011) Seizure prediction and its applications. Neurosurg Clin N Am 22(4):489–513

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bequette BW (2010) Continuous glucose monitoring: real-time algorithms for calibration, filtering, and alarms. J Diabetes Sci Technol 4(2):404

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sparacino G, Zanon M, Facchinetti A et al (2012) Italian contributions to the development of continuous glucose monitoring sensors for diabetes management. Sensors 12(10):13753–13780

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sparacino G, Facchinetti A, Maran A et al (2008) Continuous glucose monitoring time series and hypo/hyperglycemia prevention: requirements, methods, open problems. Cur Diabetes Rev 4(3):181–192

    Article  CAS  Google Scholar 

  7. Sparacino G, Facchinetti A, Cobelli C (2010) “Smart” continuous glucose monitoring sensors: on-line signal processing issues. Sensors 10(7):6751–6772

    Article  PubMed Central  PubMed  Google Scholar 

  8. Buckingham B, Cobry E, Clinton P et al (2009) Preventing hypoglycemia using predictive alarm algorithms and insulin pump suspension. Diabetes Technol Ther 11(2):93–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Buckingham B, Chase HP, Dassau E et al (2010) Prevention of nocturnal hypoglycemia using predictive alarm algorithms and insulin pump suspension. Diabetes Care 33(5):1013–1017

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bode B, Gross K, Rikalo N et al (2004) Alarms based on real-time sensor glucose values alert patients to hypo-and hyperglycemia: the guardian continuous monitoring system. Diabetes Technol Ther 6(2):105–113

    Article  CAS  PubMed  Google Scholar 

  11. Garcia A, Rack-Gomer AL, Bhavaraju NC et al (2012) Dexcom G4AP: an advanced continuous glucose monitor for the artificial pancreas. J Diabetes Sci Technol 7(6):1436–1445

    Google Scholar 

  12. Cobelli C, Renard E, Kovatchev B (2011) Artificial pancreas: past, present, future. Diabetes 60(11):2672–2682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Thabit H, Hovorka R (2012) Closed-loop insulin delivery in type 1 diabetes. Endocrinol Metab Clin North Am 41(1):105–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zecchin C, Facchinetti A, Sparacino G et al (2014) Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput Methods Programs Biomed 113(1):144–152

    Article  CAS  PubMed  Google Scholar 

  15. Cryer PE (2007) Hypoglycemia, functional brain failure, and brain death. J Clin Invest 117(4):868–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Williams G, John CP (2004) Handbook of diabetes. Blackwell, Oxford

    Google Scholar 

  17. The American Diabetes Association (2013) Standards of medical care in diabetes: 2013. Diabetes Care 36(S1):S11–S66

    Article  Google Scholar 

  18. Tamborlane WV, Beck RW, Bode BW (2008) Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med 359(10):1464–1476

    PubMed  Google Scholar 

  19. Battelino T, Phillip M, Bratina N et al (2011) Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care 34(4):795–800

    Article  PubMed Central  PubMed  Google Scholar 

  20. Deiss D, Bolinder J, Riveline JP et al (2006) Improved glycemic control in poorly controlled patients with type 1 diabetes using real-time continuous glucose monitoring. Diabetes Care 29(12):2730–2732

    Article  PubMed  Google Scholar 

  21. Reifman J, Rajaraman S, Gribok A et al (2007) Predictive monitoring for improved management of glucose levels. J Diabetes Sci Technol 1(4):478–486

    Article  PubMed Central  PubMed  Google Scholar 

  22. Gani A, Gribok AV, Rajaraman J et al (2009) Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans Biomed Eng 56(2):246–254

    Article  PubMed  Google Scholar 

  23. Sparacino G, Zanderigo F, Corazza S et al (2007) Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans Biomed Eng 54(5):931–937

    Article  PubMed  Google Scholar 

  24. Eren-Oruklu M, Cinar A, Quinn L et al (2009) Estimation of the future glucose concentrations with subject specific recursive linear models. Diabetes Technol Ther 11(4):243–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Finan DA, Doyle FJ, Palerm CC et al (2009) Experimental evaluation of a recursive model identification technique for type 1 diabetes. J Diabetes Sci Technol 5(3):1192–1202

    Article  Google Scholar 

  26. Castillo-Estrada G, del Re L, Renard E (2010) Nonlinear gain in online prediction of blood glucose profile in type 1 diabetic patients. 49th IEEE Conference on Decision and Control (CDC), p 16681673

    Google Scholar 

  27. Eren-Oruklu M, Cinar A, Rollins DK et al (2012) Adaptive system identification for estimating future glucose concentrations and hypoglycemia alarms. Automatica 48(8):1892–1897

    Article  PubMed Central  PubMed  Google Scholar 

  28. Turksoy K, Bayrak ES, Quinn L et al (2013) Hypoglycemia early alarm systems based on multivariable models. Ind Eng Chem Res 52:12329–12336

    Article  CAS  Google Scholar 

  29. Pérez-Gandía C, Facchinetti A, Sparacino G et al (2010) Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol Ther 12(1):81–88

    Article  PubMed  Google Scholar 

  30. Pappada SM, Cameron BD, Rosman PM et al (2011) Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes. Diabetes Technol Ther 13(2):135–141

    Article  CAS  PubMed  Google Scholar 

  31. Daskalaki E, Prountzou A, Diem P et al (2012) Real-time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients. Diabetes Technol Ther 14(2):168–174

    Article  PubMed  Google Scholar 

  32. Zecchin C, Facchinetti A, Sparacino G et al (2012) Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans Biomed Eng 59(6):1550–1560

    Article  PubMed  Google Scholar 

  33. McNelis PD (2005) Neural networks in finance: gaining predictive edge in the market. Elsevier Academic Press, London

    Google Scholar 

  34. Dalla Man C, Camilleri M, Cobelli C (2006) A system model of oral glucose absorption: validation on gold standard data. IEEE Trans Biomed Eng 53(12):2472–2478

    Article  PubMed  Google Scholar 

  35. Dalla Man C, Rizza RA, Cobelli C (2007) Meal simulation model of the glucose insulin system. IEEE Trans Biomed Eng 54(10):1740–1749

    Article  PubMed  Google Scholar 

  36. Facchinetti A, Sparacino G, Cobelli C (2011) Online denoising method to handle intraindividual variability of signal-to-noise ratio in continuous glucose monitoring. IEEE Trans Biomed Eng 58(9):2664–2671

    Article  PubMed  Google Scholar 

  37. Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43(1):3

    Article  CAS  PubMed  Google Scholar 

  38. S. Amari, N. Murata, K.-R. Muller, M. Finke, H. Yang (1996) Statistical Theory of Overtraining - Is Cross-Validation Asymptotically Effective?, Advances in Neural Information Processing Systems 8, Proceedings of the 1995 Conference, edited by David S. Touretzky, Michael C. Mozer and Michael E. Hasselmo pp 176–182

    Google Scholar 

  39. DIAdvisor. Personal glucose predictive diabetes advisor. http://www.diadvisor.eu/. Accessed 22 Jan 2014

  40. Gani A, Gribok AV, Lu Y et al (2010) Universal glucose models for predicting subcutaneous glucose concentration in humans. IEEE Trans Inf Technol Biomed 14(1):157–165

    Article  PubMed  Google Scholar 

  41. Facchinetti A, Sparacino G, Cobelli C (2010) Modeling the error of continuous glucose monitoring sensor data: critical aspects discussed through simulation studies. J Diabetes Sci Technol 4(1):4–14

    Article  PubMed Central  PubMed  Google Scholar 

  42. Manohar C, Levine JA, Nandy DK et al (2012) The effect of walking on postprandial glycemic excursion in patients with type 1 diabetes and healthy people. Diabetes Care 35(12):2493–2499

    Article  PubMed Central  PubMed  Google Scholar 

  43. Zecchin C, Facchinetti A, Sparacino G et al (2013) Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring. Diabetes Technol Ther 15(10):836–844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Cobelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zecchin, C., Facchinetti, A., Sparacino, G., Cobelli, C. (2015). Jump Neural Network for Real-Time Prediction of Glucose Concentration. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 1260. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2239-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2239-0_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2238-3

  • Online ISBN: 978-1-4939-2239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics