Skip to main content

Measurement of Dynamic F-Actin Changes During Exocytosis

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

  • 5024 Accesses

Abstract

Exocytosis requires the fusion of vesicle membrane to the cell membrane. It is tightly regulated and orchestrated in space and time by diverse cellular mechanisms. It has long been recognized that one of these mechanisms is an essential role played by the cytoskeleton. In particular, accumulating evidence shows that the F-actin network is engaged during the final stages of vesicle interactions with the cell membrane. Using a combination of methods it is now possible to gain insights into F-actin dynamics and reveal its role during exocytosis. Here, we describe the use of two-photon and confocal microscopy to visualize F-actin changes at the cell membrane during exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orci L, Gabbay KH, Malaisse WJ (1972) Pancreatic beta-cell web: its possible role in insulin secretion. Science 175:1128–1131

    Article  CAS  PubMed  Google Scholar 

  2. Burgoyne RD, Cheek TR (1987) Reorganization of peripheral actin-filaments as a prelude to exocytosis. Biosci Reps 7:281–288

    Article  CAS  Google Scholar 

  3. Aunis D, Bader MF (1988) The cytoskeleton as a barrier to exocytosis in secretory-cells. J Exp Biol 139:253–266

    CAS  PubMed  Google Scholar 

  4. Vitale ML, Delcastillo AR, Tchakarov L, Trifaro JM (1991) Cortical filamentous actin disassembly and scinderin redistribution during chromaffin cell stimulation precede exocytosis, a phenomenon not exhibited by gelsolin. J Cell Biol 113:1057–1067

    Article  CAS  PubMed  Google Scholar 

  5. Roth D, Burgoyne RD (1995) Stimulation of catecholamine secretion from adrenal chromaffin cells by 14-3-3-proteins is due to reorganization of the cortical actin network. FEBS Lett 374:77–81

    Article  CAS  PubMed  Google Scholar 

  6. Matter K, Dreyer F, Aktories K (1989) Actin involvement in exocytosis from pc12 cells – studies on the influence of botulinum-c2 toxin on stimulated noradrenaline release. J Neurochem 52:370–376

    Article  CAS  PubMed  Google Scholar 

  7. Pendleton A, Koffer A (2001) Effects of latrunculin reveal requirements for the actin cytoskeleton during secretion from mast cells. Cell Motil Cytoskeleton 48:37–51

    Article  CAS  PubMed  Google Scholar 

  8. Shupliakov O, Bloom O, Gustafsson JS et al (2002) Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc Natl Acad Sci U S A 99:14476–14481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Burgoyne RD, Morgan A, Osullivan AJ (1989) The control of cytoskeletal actin and exocytosis in intact and permeabilized adrenal chromaffin cells – role of calcium and protein kinase C. Cell Signal 1:323–330

    Article  CAS  PubMed  Google Scholar 

  10. Thurmond DC, Gonelle-Gispert C, Furukawa M, Halban PA, Pessin JE (2003) Glucose-stimulated insulin secretion is coupled to the interaction of actin with the t-SNARE (target membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein) complex. Mol Endocrinol 17:732–742

    Article  CAS  PubMed  Google Scholar 

  11. Tomas A, Yermen B, Min L, Pessin JE, Halban PA (2006) Regulation of pancreatic beta-cell insulin secretion by actin cytoskeleton remodelling: role of gelsolin and cooperation with the MAPK signalling pathway. J Cell Sci 119:2156–2167

    Article  CAS  PubMed  Google Scholar 

  12. Valentijn KM, Gumkowski FD, Jamison JD (1999) The subapical actin cytoskeleton regulates secretion and membrane retrieval in pancreatic acinar cells. J Cell Sci 112:81–96

    CAS  PubMed  Google Scholar 

  13. Nemoto T, Kojima T, Oshima A, Bito H, Kasai H (2004) Stabilization of exocytosis by dynamic f-actin coating of zymogen granules in pancreatic acini. J Biol Chem 279:37544–37550

    Article  CAS  PubMed  Google Scholar 

  14. Turvey MR, Thorn P (2004) Lysine-fixable dye tracing of exocytosis shows f-actin coating is a step that follows granule fusion in pancreatic acinar cells. Pflugers Arch 448:552–555

    Article  CAS  PubMed  Google Scholar 

  15. Jungermann J, Lerch MM, Weidenbach H et al (1995) Disassembly of rat pancreatic acinar cell cytoskeleton during supramaximal secretagogue stimulation. Am J Physiol 268:G328–G338

    CAS  PubMed  Google Scholar 

  16. Jerdeva GV, Wu KJ, Yarber FA et al (2005) Actin and non-muscle myosin ii facilitate apical exocytosis of tear proteins in rabbit lacrimal acinar epithelial cells. J Cell Sci 118:4797–4812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Miklavc P, Hecht E, Hobi N et al (2012) Actin coating and compression of fused secretory vesicles are essential for surfactant secretion – a role for Rho, formins and myosin II. J Cell Sci 125:2765–2774

    Article  CAS  PubMed  Google Scholar 

  18. Nightingale TD, White IJ, Doyle EL et al (2011) Actomyosin II contractility expels von Willebrand factor from Weibel-Palade bodies during exocytosis. J Cell Biol 194:613–629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Morales M, Colicos MA, Goda Y (2000) Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27:539–550

    Article  CAS  PubMed  Google Scholar 

  20. Oheim M, Stuhmer W (2000) Tracking chromaffin granules on their way through the actin cortex. Eur Biophys J 29:67–89

    Article  CAS  PubMed  Google Scholar 

  21. Valentijn JA, Valentijn K, Pastore LM, Jamieson JD (2000) Actin coating of secretory granules during regulated exocytosis correlates with the release of RAB3D. Proc Natl Acad Sci U S A 97:1091–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sokac AM, Co C, Taunton J, Bement W (2003) Cdc42-dependent actin polymerization during compensatory endocytosis in Xenopus eggs. Nat Cell Biol 5:727–732

    Article  CAS  PubMed  Google Scholar 

  23. Riedl J, Crevenna AH, Kessenbrock K et al (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Jang Y, Soekmadji C, Mitchell JM, Thomas WG, Thorn P (2012) Real-time measurement of F-actin remodelling during exocytosis using Lifeact-EGFP transgenic animals. PLoS One 7:e39815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wen PJ, Osborne SL, Zanin M et al (2011) Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells. Nat Commun 2:491

    Article  PubMed  Google Scholar 

  26. Riedl J, Flynn KC, Raducanu A et al (2010) Lifeact mice for studying F-actin dynamics. Nat Methods 7:168–169

    Article  CAS  PubMed  Google Scholar 

  27. Thorn P, Fogarty KE, Parker I (2004) Zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity. Proc Natl Acad Sci U S A 101:6774–6779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pologruto TA, Sabatini BL, Svoboda K (2003) Scanimage: flexible software for operating laser scanning microscopes. Biomed Eng 17:13

    Google Scholar 

Download references

Acknowledgements

This work was supported by an Australian Research Council Grant DP110100642 and National Health and Medical Research Council Grants APP1002520and APP1020764.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Thorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thorn, P. (2014). Measurement of Dynamic F-Actin Changes During Exocytosis. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics