Skip to main content

Metabolic Footprinting: Extracellular Metabolomic Analysis

  • Protocol
  • First Online:
Book cover Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Uptake and excretion of nutrients is an integral part of a cell’s physiology. Using analytical chemistry techniques, metabolite uptake and excretion from the culture medium can be quantified. As cellular metabolism changes throughout growth, additional information is available if transient and growth phase-dependent changes are monitored. Here, we describe time-resolved metabolic footprinting (TReF), a technique which employs nuclear magnetic resonance spectroscopy and nonlinear curve fitting to understand and visualize metabolite utilization of P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryan D, Robards K (2006) Metabolomics: the greatest omics of them all? Anal Chem 78:7954–7958

    Article  CAS  Google Scholar 

  2. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056

    Article  CAS  Google Scholar 

  3. Raamsdonk LM et al (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50

    Article  CAS  Google Scholar 

  4. Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307

    Article  CAS  Google Scholar 

  5. Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29:1–16

    Article  CAS  Google Scholar 

  6. van Gulik WM (2010) Fast sampling for quantitative microbial metabolomics. Curr Opin Biotechnol 21:27–34

    Article  Google Scholar 

  7. Behrends V, Ryall B, Zlosnik JEA, Speert DP, Bundy JG, Williams HD (2012) Metabolic adaptations of Pseudomonas aeruginosa during cystic fibrosis chronic lung infections. Environ Microbiol 15:398–408. doi:10.1111/j.1462-2920.2012.02840.x

    Article  CAS  PubMed  Google Scholar 

  8. Behrends V, Ryall B, Wang X, Bundy JG, Williams HD (2010) Metabolic profiling of Pseudomonas aeruginosa demonstrates that the anti-sigma factor MucA modulates osmotic stress tolerance. Mol Biosyst 6:562–569

    Article  CAS  Google Scholar 

  9. Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696

    Article  CAS  Google Scholar 

  10. Behrends V, Ebbels TMD, Williams HD, Bundy JG (2009) Time-resolved metabolic footprinting for nonlinear modeling of bacterial substrate utilization. Appl Environ Microbiol 75:2453–2463

    Article  CAS  Google Scholar 

  11. Palmer KL, Aye LM, Whiteley M (2007) Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189:8079–8087

    Article  CAS  Google Scholar 

  12. Sriramulu DD, Lünsdorf H, Lam JS, Römling U (2005) Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 54: 667–676

    Article  Google Scholar 

  13. Markley JL, Ulrich EL, Berman HM, Henrick K, Nakamura H, Akutsu H (2008) BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions. J Biomol NMR 40:153–155

    Article  CAS  Google Scholar 

  14. Wishart DS et al (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35:D521–D526

    Article  CAS  Google Scholar 

  15. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78:4430–4442

    Article  CAS  Google Scholar 

  16. Hao J, Astle W, De Iorio M, Ebbels TMD (2012) BATMAN—an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model. Bioinformatics 28:2088–2090

    Article  CAS  Google Scholar 

  17. Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703

    Article  CAS  Google Scholar 

  18. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16: 373–378

    Article  CAS  Google Scholar 

  19. Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C (2012) Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp. doi:10.3791/3857

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, Barraclough TG (2012) Species interactions alter evolutionary responses to a novel environment. PLoS Biol 10:e1001330. doi:10.1371/journal.pbio.1001330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Olaf Beckonert and Dr Anthony Maher for technical assistance with NMR spectroscopy and Prof. Jeremy Nicholson and Prof. Elaine Holmes for support and access to facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob G. Bundy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Behrends, V., Williams, H.D., Bundy, J.G. (2014). Metabolic Footprinting: Extracellular Metabolomic Analysis. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics