Skip to main content

Can We Use Metabolomics to Understand Changes to Gut Microbiota Populations and Function? A Nutritional Perspective

  • Chapter
  • First Online:
Metabonomics and Gut Microbiota in Nutrition and Disease

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Food is an integral part of human life, and the composition of our diet is an important determinant of our health and well-being. Food is also the main source of energy and nutrients for the gut microbiota, the 100 trillion cells that coexist inside us. The impact of macronutrients (protein, fat, carbohydrates, and fiber) and specific non-nutrient food components (polyphenols) will be reviewed in the context of gut microbial function and interaction with the host. Colonic microbiota provides diverse enzymatic activities differing from our own, which lead to the production of metabolites essential for key metabolic functions, including carbohydrate and amino acid metabolism. Certain gut metabolites are specific to microbial activity and confer functionalities beyond energy production, such as signalling cascades across cells, tissues, and organs. Metabolomics has proven to be a useful tool to measure the effects of food on the gut microbiota and its interaction with host metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I. Functional food science and gastrointestinal physiology and function. Br J Nutr. 1998;80 Suppl 1:S147–71.

    Article  CAS  PubMed  Google Scholar 

  2. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Macfarlane GT, Cummings JH, Allison C. Protein degradation by human intestinal bacteria. J Gen Microbiol. 1986;132(6):1647–56.

    CAS  PubMed  Google Scholar 

  5. Kruis W, Forstmaier G, Scheurlen C, Stellaard F. Effect of diets low and high in refined sugars on gut transit, bile acid metabolism, and bacterial fermentation. Gut. 1991;32(4):367–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. van der Kamp JW, Poutanen K, Seal CJ, Richardson DP. The HEALTHGRAIN definition of ‘whole grain’. Food Nutr Res. 2014;58:22100.

    Google Scholar 

  7. Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C, Gibson GR, Tuohy KM. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr. 2008;99(1):110–20.

    Article  CAS  PubMed  Google Scholar 

  8. Ross AB, Bruce SJ, Blondel-Lubrano A, Oguey-Araymon S, Beaumont M, Bourgeois A, Nielsen-Moennoz C, Vigo M, Fay LB, Kochhar S, Bibiloni R, Pittet AC, Emady-Azar S, Grathwohl D, Rezzi S. A whole-grain cereal-rich diet increases plasma betaine, and tends to decrease total and LDL-cholesterol compared with a refined-grain diet in healthy subjects. Br J Nutr. 2011;105(10):1492–502.

    Article  CAS  PubMed  Google Scholar 

  9. Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, Louk JA, Rose DJ, Kyureghian G, Peterson DA, Haub MD, Walter J. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2012;7(2):269–80.

    Article  PubMed Central  PubMed  Google Scholar 

  10. McIntosh GH, Noakes M, Royle PJ, Foster PR. Whole-grain rye and wheat foods and markers of bowel health in overweight middle-aged men. Am J Clin Nutr. 2003;77(4):967–74.

    CAS  PubMed  Google Scholar 

  11. Ross AB, Pere-Trepat E, Montoliu I, Martin FP, Collino S, Moco S, Godin JP, Cleroux M, Guy PA, Breton I, Bibiloni R, Thorimbert A, Tavazzi I, Tornier L, Bebuis A, Bruce SJ, Beaumont M, Fay LB, Kochhar S. A whole-grain-rich diet reduces urinary excretion of markers of protein catabolism and gut microbiota metabolism in healthy men after one week. J Nutr. 2013;143(6):766–73.

    Article  CAS  PubMed  Google Scholar 

  12. Fardet A, Canlet C, Gottardi G, Lyan B, Llorach R, Remesy C, Mazur A, Paris A, Scalbert A. Whole-grain and refined wheat flours show distinct metabolic profiles in rats as assessed by a 1H NMR-based metabonomic approach. J Nutr. 2007;137(4):923–9.

    CAS  PubMed  Google Scholar 

  13. Lappi J, Kolehmainen M, Mykkanen H, Poutanen K. Do large intestinal events explain the protective effects of whole grain foods against type 2 diabetes? Crit Rev Food Sci Nutr. 2013;53(6):631–40.

    Article  CAS  PubMed  Google Scholar 

  14. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.

    Article  CAS  PubMed  Google Scholar 

  15. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zhang AQ, Mitchell SC, Smith RL. Dietary precursors of trimethylamine in man: a pilot study. Food Chem Toxicol. 1999;37(5):515–20.

    Article  CAS  PubMed  Google Scholar 

  18. Takata Y, Zhang X, Li H, Gao YT, Yang G, Gao J, Cai H, Xiang YB, Zheng W, Shu XO. Fish intake and risks of total and cause-specific mortality in 2 population-based cohort studies of 134,296 men and women. Am J Epidemiol. 2013;178(1):46–57.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Li YH, Zhou CH, Pei HJ, Zhou XL, Li LH, Wu YJ, Hui RT. Fish consumption and incidence of heart failure: a meta-analysis of prospective cohort studies. Chi Med J. 2013;126(5):942–8.

    Google Scholar 

  20. Raatz SK, Silverstein JT, Jahns L, Picklo MJ. Issues of fish consumption for cardiovascular disease risk reduction. Nutrients. 2013;5(4):1081–97.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Konstantinova SV, Tell GS, Vollset SE, Nygård O, Bleie Ø, Ueland PM. Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women. J Nutr. 2008;138(5):914–20.

    CAS  PubMed  Google Scholar 

  22. Bruce SJ, Guy PA, Rezzi S, Ross AB. Quantitative measurement of betaine and free choline in plasma, cereals and cereal products by isotope dilution LC-MS/MS. J Agric Food Chem. 2010;58(4):2055–61.

    Article  CAS  PubMed  Google Scholar 

  23. Zeisel SH, Caudill MA. Choline. Adv Nutr. 2010;1:46–8.

    Article  Google Scholar 

  24. Olthof MR, Van Vliet T, Boelsma E, Verhoef P. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr. 2003;133(12):4135–8.

    CAS  PubMed  Google Scholar 

  25. Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ross AB. Present status and perspectives on the use of alkylresorcinols as biomarkers of wholegrain wheat and rye intake. J Nutr Metab. 2012;12:46297.

    Google Scholar 

  27. Markhus MW, Graff IE, Dahl L, Seldal CF, Skotheim S, Braarud HC, Stormark KM, Malde MK. Establishment of a seafood index to assess the seafood consumption in pregnant women. Food Nutr Res. 2013;57:19272.

    Google Scholar 

  28. Chien KL, Lee MS, Tsai YT, Chen PR, Lin HJ, Hsu HC, Lee YT, Chen MF. A Taiwanese food frequency questionnaire correlates with plasma docosahexaenoic acid but not with plasma eicosapentaenoic acid levels: questionnaires and plasma biomarkers. BMC Med Res Methodol. 2013;13:23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, Didonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Geypens B, Claus D, Evenepoel P, Hiele M, Maes B, Peeters M, Rutgeerts P, Ghoos Y. Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut. 1997;41(1):70–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Windey K, de Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 2012;56(1):184–96.

    Article  CAS  PubMed  Google Scholar 

  32. Le Leu RK, Brown IL, Hu Y, Morita T, Esterman A, Young GP. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Carcinogenesis. 2007;28(2):240–5.

    Article  PubMed  Google Scholar 

  33. Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, Duncan G, Johnstone AM, Lobley GE, Wallace RJ, Duthie GG, Flint HJ. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011;93(5):1062–72.

    Article  CAS  PubMed  Google Scholar 

  34. Moco S, Martin FP, Rezzi S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res. 2012;11(10):4781–90.

    Article  CAS  PubMed  Google Scholar 

  35. Martin FPJ, Montoliu I, Nagy K, Moco S, Collino S, Guy P, Redeuil K, Scherer M, Rezzi S, Kochhar S. Specific dietary preferences are linked to differing gut microbial metabolic activity in response to dark chocolate intake. J Proteome Res. 2012;11(12):6252–63.

    CAS  PubMed  Google Scholar 

  36. Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr. 2011;93(1):62–72.

    Article  CAS  PubMed  Google Scholar 

  37. Massot-Cladera M, Perez-Berezo T, Franch A, Castell M, Perez-Cano FJ. Cocoa modulatory effect on rat faecal microbiota and colonic crosstalk. Arch Biochem Biophys. 2012;527(2):105–12.

    Article  CAS  PubMed  Google Scholar 

  38. Fogliano V, Corollaro ML, Vitaglione P, Napolitano A, Ferracane R, Travaglia F, Arlorio M, Costabile A, Klinder A, Gibson G. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Mol Nutr Food Res. 2011;55 Suppl 1:S44–55.

    Article  CAS  PubMed  Google Scholar 

  39. Lees HJ, Swann JR, Wilson ID, Nicholson JK, Holmes E. Hippurate: the natural history of a mammalian-microbial cometabolite. J Proteome Res. 2013;12(4):1527–46.

    Article  CAS  PubMed  Google Scholar 

  40. Mitjavila MT, Moreno JJ. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem Pharmacol. 2012;84(9):1113–22.

    Article  CAS  PubMed  Google Scholar 

  41. Brandt LJ, Aroniadis OC. An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointest Endosc. 2013;78(2):240–249.

    Article  PubMed  Google Scholar 

  42. Moco S, Bino RJ, De Vos RCH, Vervoort J. Metabolomics technologies and metabolite identification. Trends Anal Chem. 2007;26:855–66.

    Article  CAS  Google Scholar 

  43. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, Zhou Z, Bao Y, Jia W, Nicholson JK. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res. 2011;10(12):5512–22.

    Article  CAS  PubMed  Google Scholar 

  45. Dixon E, Clubb C, Pittman S, Ammann L, Rasheed Z, Kazmi N, Keshavarzian A, Gillevet P, Rangwala H, Couch RD. Solid-phase microextraction and the human fecal VOC metabolome. PLoS One. 2011;6(4):e18471.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Parra MD, Martinez JA. Nutritional aspects of breath testing based on stable isotopes. Nutr Rev. 2006;64(7 Pt 1):338–47.

    Article  PubMed  Google Scholar 

  47. Rosén LAH, Silva LOB, Andersson UK, Holm C, Östman EM, Björck IM. Endosperm and whole grain rye breads are characterized by low post-prandial insulin response and a beneficial blood glucose profile. Nutr J. 2009;8:42.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Roediger WE, Moore A. Effect of short-chaim fatty acid on sodium absorption in isolated human colon perfused through the vascular bed. Dig Dis Sci. 1981;26(2):100–6.

    Article  CAS  PubMed  Google Scholar 

  49. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13(5):517–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Mansour A, Hosseini S, Larijani B, Pajouhi M, Mohajeri-Tehrani MR. Nutrients related to GLP1 secretory responses. Nutrition. 2013;29(6):813–20.

    Article  CAS  PubMed  Google Scholar 

  51. Viladomiu M, Hontecillas R, Yuan L, Lu P, Bassaganya-Riera J. Nutritional protective mechanisms against gut inflammation. J Nutr Biochem. 2013;24(6):929–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kaczmarczyk MM, Miller MJ, Freund GG. The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metab Clin Exp. 2012;61(8):1058–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5(4):1417–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Caricilli AM, Saad MJA. The role of gut microbiota on insulin resistance. Nutrients. 2013;5(3):829–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci. 2008;105(43):16767–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Cummings JH, Hill MJ, Bone ES, Branch WJ, Jenkins DJ. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr. 1979;32(10):2094–101.

    CAS  PubMed  Google Scholar 

  57. Lord RS, Bralley JA. Clinical applications of urinary organic acids. Part 2: Dysbiosis markers. Alternat Med Rev. 2008;13(4):292–306.

    Google Scholar 

  58. Bone E, Tamm A, Hill M. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am J Clin Nutr. 1976;29(12):1448–54.

    CAS  PubMed  Google Scholar 

  59. Dawson LF, Donahue EH, Cartman ST, Barton RH, Bundy J, McNerney R, Minton NP, Wren BW. The analysis of para-cresol production and tolerance in clostridium difficile 027 and 012 strains. BMC Microbiol. 2011;11:86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A. 2009;106(34):14728–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Schepers E, Meert N, Glorieux G, Goeman J, Van der Eycken J, Vanholder R. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol Dial Transplant. 2007;22(2):592–6.

    Article  CAS  PubMed  Google Scholar 

  62. DeWolf WE, Carr SA, Varrichio A, Goodhart PJ, Mentzer MA, Roberts GD, Southan C, Dolle RE, Kruse LI. Inactivation of dopamine Beta-hydroxylase by p-cresol: isolation and characterization of covalently modified active site peptides. Biochemistry. 1988;27(26):9093–101.

    Article  CAS  PubMed  Google Scholar 

  63. Seakins JW. The determination of urinary phenylacetylglutamine as phenylacetic acid. Studies on its origin in normal subjects and children with cystic fibrosis. Clin Chem Acta. 1971;35(1):121–31.

    Article  CAS  Google Scholar 

  64. Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol. 2011;19(7):349–59.

    Article  CAS  PubMed  Google Scholar 

  65. Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010;34(4):426–44.

    CAS  PubMed  Google Scholar 

  66. Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci U S A. 2010;107(1):228–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Coppen A, Shaw DM, Malleson A, Eccleston E, Gundy G. Tryptamine metabolism in depression. Br J Psychiatry J Ment Sci. 1965;111(479):993–8.

    Article  CAS  Google Scholar 

  68. Metzner L, Kottra G, Neubert K, Daniel H, Brandsch M. Serotonin, l-tryptophan, and tryptamine are effective inhibitors of the amino acid transport system PAT1. FASEB J. 2005;19(11):1468–73.

    Article  CAS  PubMed  Google Scholar 

  69. Bommarius B, Anyanful A, Izrayelit Y, Bhatt S, Cartwright E, Wang W, Swimm AI, Benian GM, Schroeder FC, Kalman D. A family of indoles regulate virulence and Shiga toxin production in pathogenic E. coli. PLoS One. 2013;8(1):e54456.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P, Defez R. Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol. 2006;185(5):373–82.

    Article  CAS  PubMed  Google Scholar 

  71. Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA. Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem. 1999;274(31):21937–42.

    Article  CAS  PubMed  Google Scholar 

  72. Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology. 2009;136(6):2003–14.

    Article  PubMed  Google Scholar 

  73. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, Mitchell SC, Holmes E, McCarthy MI, Scott J, Gauguier D, Nicholson JK. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006;103(33):12511–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Weickert MO, Arafat AM, Blaut M, Alpert C, Becker N, Leupelt V, Rudovich N, Möhlig M, Pfeiffer AF. Changes in dominant groups of the gut microbiota do not explain cereal-fiber induced improvement of whole-body insulin sensitivity. Nutr Metab. 2011;8:90.

    Article  CAS  Google Scholar 

  75. Ward LA, Johnson KA, Robinson IM, Yokoyama MT. Isolation from swine feces of a bacterium which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol). Appl Environ Microbiol. 1987;53(1):189–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Yokoyama MT, Carlson JR. Production of Skatole and para-Cresol by a Rumen Lactobacillus sp. Appl Environ Microbiol. 1981;41(1):71–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Smith EA, Macfarlane GT. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol. 1996;81(3):288–302.

    Article  CAS  PubMed  Google Scholar 

  78. Keszthelyi D, Troost FJ, Masclee AA. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil. 2009;21(12):1239–49.

    Article  CAS  PubMed  Google Scholar 

  79. Allison C, Macfarlane GT. Influence of pH, nutrient availability, and growth rate on amine production by Bacteroides fragilis and Clostridium perfringens. Appl Environ Microbiol. 1989;55(11):2894–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Decroos K, Vanhemmens S, Cattoir S, Boon N, Verstraete W. Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol. 2005;183(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  81. Nyangale EP, Mottram DS, Gibson GR. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J Proteome Res. 2012;11(12):5573–85.

    CAS  PubMed  Google Scholar 

  82. Allison MJ. Production of branched-chain volatile fatty acids by certain anaerobic bacteria. Appl Environ Microbiol. 1978;35(5):872–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Saxholt E, Christensen AT, Møller A, Hartkopp HB, Hess Ygil K, Hels OH. Fødevaredatabanken, version 7 (Danish Food Database, version 7). Afdelning for Enæring, Fødevareinstituttet, Danmarks Tekniske Universitet (2008). Accessed 6 May 2013.

    Google Scholar 

  84. Cooper KA, Campos-Gimenez E, Jimenez Alvarez D, Rytz A, Nagy K, Williamson G. Predictive relationship between polyphenol and nonfat cocoa solids content of chocolate. J Agric Food Chem. 2008;56(1):260–5.

    Article  CAS  PubMed  Google Scholar 

  85. Actis-Goretta L, Ottaviani JI, Fraga CG. Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. J Agric Food Chem. 2006;54(1):229–34.

    Article  CAS  PubMed  Google Scholar 

  86. Irakli MN, Samanidou VF, Biliaderis CG, Papadoyannis IN. Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection. J Sep Sci. 2012;35(13):1603–11.

    Article  CAS  PubMed  Google Scholar 

  87. Mattila P, Hellstrom J, Torronen R. Phenolic acids in berries, fruits, and beverages. J Agric Food Chem. 2006;54(19):7193–9.

    Article  CAS  PubMed  Google Scholar 

  88. Renouf M, Marmet C, Guy P, Fraering AL, Longet K, Moulin J, Enslen M, Barron D, Cavin C, Dionisi F, Rezzi S, Kochhar S, Steiling H, Williamson G. Nondairy creamer, but not milk, delays the appearance of coffee phenolic acid equivalents in human plasma. J Nutr. 2010;140(2):259–63.

    Article  CAS  PubMed  Google Scholar 

  89. Kyle JA, Morrice PC, McNeill G, Duthie GG. Effects of infusion time and addition of milk on content and absorption of polyphenols from black tea. J Agric Food Chem. 2007;55(12):4889–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Moco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Moco, S., Ross, A.B. (2015). Can We Use Metabolomics to Understand Changes to Gut Microbiota Populations and Function? A Nutritional Perspective. In: Kochhar, S., Martin, FP. (eds) Metabonomics and Gut Microbiota in Nutrition and Disease. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6539-2_5

Download citation

Publish with us

Policies and ethics