Skip to main content

Sister chromatid recombination

  • Chapter
  • First Online:
Molecular Genetics of Recombination

Part of the book series: Topics in Current Genetics ((TCG,volume 17))

Abstract

Homologous recombination is a DNA repair mechanism that uses the genetic information of a homologous DNA sequence as template for repair of a DNA break. The genetic consequences of recombination depend on the choice of the molecule used as template. While sister-chromatid recombination (SCR), which uses as template for repair the identical and intact sister chromatid, preserves genome integrity, allelic and ectopic recombination can compromise it. SCR is, thus, the most secure mechanism of recombinational repair. This, together with the fact that most DNA breaks may appear spontaneously during replication, makes SCR the major recombination event occurring in mitotic cells from yeast to mammals. Given its physiological relevance, we review here the current knowledge about the mechanism(s) of SCR as well as the genetic and molecular factors controlling it, and how this knowledge open new perspectives to our understanding of genome dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams CR, Kamakaka RT (1999) Chromatin assembly: biochemical identities and genetic redundancy. Curr Opin Genet Dev 9:185–190

    Article  PubMed  CAS  Google Scholar 

  2. Aguilera A, Chavez S, Malagon F (2000) Mitotic recombination in yeast: elements controlling its incidence. Yeast 16:731–754

    Article  PubMed  CAS  Google Scholar 

  3. Ajimura M, Leem SH, Ogawa H (1993) Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133:51–66

    PubMed  CAS  Google Scholar 

  4. Anderson DE, Trujillo KM, Sung P, Erickson HP (2001) Structure of the Rad50 × Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy. J Biol Chem 276:37027–37033

    Article  PubMed  CAS  Google Scholar 

  5. Arbel A, Zenvirth D, Simchen G (1999) Sister chromatid-based DNA repair is mediated by RAD54, not by DMC1 or TID1. EMBO J 18:2648–2658

    Article  PubMed  CAS  Google Scholar 

  6. Asai T, Bates DB, Kogoma T (1994) DNA replication triggered by double-stranded breaks in E. coli: dependence on homologous recombination functions. Cell 78:1051–1061

    Article  PubMed  CAS  Google Scholar 

  7. Aylon Y, Liefshitz B, Kupiec M (2004) The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J 23:4868–4875

    Article  PubMed  CAS  Google Scholar 

  8. Bartram CR, Koske-Westphal T, Passarge E (1976) Chromatid exchanges in ataxia telangiectasia, Bloom syndrome, Werner syndrome, and xeroderma pigmentosum. Ann Hum Genet 40:79–86

    Article  PubMed  CAS  Google Scholar 

  9. Betts Lindroos H, Strom L, Itoh T, Katou Y, Shirahige K, Sjogren C (2006) Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol Cell 22:755–767

    Article  CAS  Google Scholar 

  10. Bressan DA, Baxter BK, Petrini JH (1999) The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 19:7681–7687

    PubMed  CAS  Google Scholar 

  11. Brewen JGP, Peacock WJ (1969) The effect of tritiated thymidineon sister-chromatid exchange in a ring chromosome. Mutat Res 7:433–440

    PubMed  CAS  Google Scholar 

  12. Broomfield S, Hryciw T, Xiao W (2001) DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res 486:167–184

    PubMed  CAS  Google Scholar 

  13. Casper AM, Nghiem P, Arlt MF, Glover TW (2002) ATR regulates fragile site stability. Cell 111:779–789

    Article  PubMed  CAS  Google Scholar 

  14. Cha RS, Kleckner N (2002) ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602–606

    Article  PubMed  CAS  Google Scholar 

  15. Clark AJ, Chamberlin M (1966) Abnormal metabolic response to ultraviolet light of a recombination deficient mutant of Escherichia coli K12. J Mol Biol 19:442–454

    Article  PubMed  CAS  Google Scholar 

  16. Clerici M, Mantiero D, Lucchini G, Longhese MP (2006) The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep 7:212–218

    Article  PubMed  CAS  Google Scholar 

  17. Cobb JA, Bjergbaek L, Shimada K, Frei C, Gasser SM (2003) DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J 22:4325–4336

    Article  PubMed  CAS  Google Scholar 

  18. Cortes F, Pinero J, Palitti F (1993) Cytogenetic effects of inhibition of topoisomerase I or II activities in the CHO mutant EM9 and its parental line AA8. Mutat Res 288:281–289

    PubMed  CAS  Google Scholar 

  19. Cortes-Ledesma F, Aguilera A (2006) Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep 7:919–926

    Article  PubMed  CAS  Google Scholar 

  20. Courcelle J, Donaldson JR, Chow KH, Courcelle CT (2003) DNA damage-induced replication fork regression and processing in Escherichia coli. Science 299:1064–1067

    Article  PubMed  CAS  Google Scholar 

  21. Cox MM (2001) Historical overview: searching for replication help in all of the rec places. Proc Natl Acad Sci USA 98:8173–8180

    Article  PubMed  CAS  Google Scholar 

  22. Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ (2000) The importance of repairing stalled replication forks. Nature 404:37–41

    Article  PubMed  CAS  Google Scholar 

  23. Dannenberg R, Mosig G (1981) Semiconservative DNA replication is initiated at a single site in recombination-deficient gene 32 mutants of bacteriophage T4. J Virol 40:890–900

    PubMed  CAS  Google Scholar 

  24. de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R, Wyman C (2001) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8:1129–1135

    Article  PubMed  Google Scholar 

  25. De Piccoli G, Cortes-Ledesma F, Ira G, Torres-Rosell J, Uhle S, Farmer S, Hwang JY, Machin F, Ceschia A, McAleenan A, Cordon-Preciado V, Clemente-Blanco A, Vilella-Mitjana F, Ullal P, Jarmuz A, Leitao B, Bressan D, Dotiwala F, Papusha A, Zhao X, Myung K, Haber JE, Aguilera A, Aragon L (2006) Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat Cell Biol 8:1032–1034

    Article  PubMed  CAS  Google Scholar 

  26. Degrassi F, De Salvia R, Tanzarella C, Palitti F (1989) Induction of chromosomal aberrations and SCE by camptothecin, an inhibitor of mammalian topoisomerase I. Mutat Res 211:125–130

    PubMed  CAS  Google Scholar 

  27. Deshpande AM, Newlon CS (1996) DNA replication fork pause sites dependent on transcription. Science 272:1030–1033

    Article  PubMed  CAS  Google Scholar 

  28. Dong Z, Fasullo M (2003) Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes. Nucleic Acids Res 31:2576–2585

    Article  PubMed  CAS  Google Scholar 

  29. Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001–1004

    Article  PubMed  CAS  Google Scholar 

  30. Dronkert ML, Beverloo HB, Johnson RD, Hoeijmakers JH, Jasin M, Kanaar R (2000) Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol Cell Biol 20:3147–3156

    Article  PubMed  CAS  Google Scholar 

  31. Fabre F, Chan A, Heyer WD, Gangloff S (2002) Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc Natl Acad Sci USA 99:16887–16892

    Article  PubMed  CAS  Google Scholar 

  32. Fasullo M, Bennett T, AhChing P, Koudelik J (1998) The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations. Mol Cell Biol 18:1190–1200

    PubMed  CAS  Google Scholar 

  33. Fasullo M, Giallanza P, Dong Z, Cera C, Bennett T (2001) Saccharomyces cerevisiae rad51 mutants are defective in DNA damage-associated sister chromatid exchanges but exhibit increased rates of homology-directed translocations. Genetics 158:959–972

    PubMed  CAS  Google Scholar 

  34. Fasullo MD, Dong Z (2004) Genetic control of sister chromatid recombination: The role of radiation repair (RAD) genes. Curr Genomics 5:123–136

    Article  CAS  Google Scholar 

  35. Fasullo MT, Davis RW (1987) Recombinational substrates designed to study recombination between unique and repetitive sequences in vivo. Proc Natl Acad Sci USA 84:6215–6219

    Article  PubMed  CAS  Google Scholar 

  36. Game JC, Mortimer RK (1974) A genetic study of x-ray sensitive mutants in yeast. Mutat Res 24:281–292

    Article  PubMed  CAS  Google Scholar 

  37. Game JC, Sitney KC, Cook VE, Mortimer RK (1989) Use of a ring chromosome and pulsed-field gels to study interhomolog recombination, double-strand DNA breaks and sister-chromatid exchange in yeast. Genetics 123:695–713

    PubMed  CAS  Google Scholar 

  38. Gatti M, Santini G, Pimpinelli S, Olivieri G (1979) Lack of spontaneous sister chromatid exchanges in somatic cells of Drosophila melanogaster. Genetics 91:255–274

    PubMed  CAS  Google Scholar 

  39. Gonzalez-Barrera S, Cortés-Ledesma F, Wellinger RE, Aguilera A (2003) Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast. Mol Cell 11:1661–1671

    Article  PubMed  CAS  Google Scholar 

  40. Haber JE (1998) The many interfaces of Mre11. Cell 95:583–586

    Article  PubMed  CAS  Google Scholar 

  41. Haering CH, Nasmyth K (2003) Building and breaking bridges between sister chromatids. Bioessays 25:1178–1191

    Article  PubMed  CAS  Google Scholar 

  42. Helleday T (2003) Pathways for mitotic homologous recombination in mammalian cells. Mutat Res 532:103–115

    PubMed  CAS  Google Scholar 

  43. Heller RC, Marians KJ (2006) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–562

    Article  PubMed  CAS  Google Scholar 

  44. Higgins NP, Kato K, Strauss B (1976) A model for replication repair in mammalian cells. J Mol Biol 101:417–425

    Article  PubMed  CAS  Google Scholar 

  45. Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, Karcher A, Henderson B, Bodmer JL, McMurray CT, Carney JP, Petrini JH, Tainer JA (2002) The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–566

    Article  PubMed  CAS  Google Scholar 

  46. Horii Z, Clark AJ (1973) Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol 80:327–344

    Article  PubMed  CAS  Google Scholar 

  47. Horiuchi T, Fujimura Y (1995) Recombinational rescue of the stalled DNA replication fork: a model based on analysis of an Escherichia coli strain with a chromosome region difficult to replicate. J Bacteriol 177:783–791

    PubMed  CAS  Google Scholar 

  48. Howard-Flanders P, Theriot L (1966) Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics 53:1137–1150

    PubMed  CAS  Google Scholar 

  49. Ira G, Malkova A, Liberi G, Foiani M, Haber JE (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115:401–411

    Article  PubMed  CAS  Google Scholar 

  50. Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM, Haber JE, Foiani M (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431:1011–1017

    Article  PubMed  CAS  Google Scholar 

  51. Ivanov D, Nasmyth K (2005) A topological interaction between cohesin rings and a circular minichromosome. Cell 122:849–860

    Article  PubMed  CAS  Google Scholar 

  52. Ivanov EL, Korolev VG, Fabre F (1992) XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132:651–664

    PubMed  CAS  Google Scholar 

  53. Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA (2003) The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell 12:1525–1536

    Article  PubMed  CAS  Google Scholar 

  54. Jackson JA, Fink GR (1981) Gene conversion between duplicated genetic elements in yeast. Nature 292:306–311

    Article  PubMed  CAS  Google Scholar 

  55. Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19:3398–3407

    Article  PubMed  CAS  Google Scholar 

  56. Johzuka K, Terasawa M, Ogawa H, Ogawa T, Horiuchi T (2006) Condensin loaded onto the replication fork barrier site in the rRNA gene repeats during S phase in a FOB1-dependent fashion to prevent contraction of a long repetitive array in Saccharomyces cerevisiae. Mol Cell Biol 26:2226–2236

    Article  PubMed  CAS  Google Scholar 

  57. Kadyk LC, Hartwell LH (1992) Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132:387–402

    PubMed  CAS  Google Scholar 

  58. Kadyk LC, Hartwell LH (1993) Replication-dependent sister chromatid recombination in rad1 mutants of Saccharomyces cerevisiae. Genetics 133:469–487

    PubMed  CAS  Google Scholar 

  59. Kato H (1974) Spontaneous sister chromatid exchanges detected by a BrdU-labeling method. Nature 251:70–72

    Article  PubMed  CAS  Google Scholar 

  60. Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1078–1083

    Article  PubMed  CAS  Google Scholar 

  61. Keil RL, McWilliams AD (1993) A gene with specific and global effects on recombination of sequences from tandemly repeated genes in Saccharomyces cerevisiae. Genetics 135:711–718

    PubMed  CAS  Google Scholar 

  62. Kim JS, Krasieva TB, LaMorte V, Taylor AM, Yokomori K (2002a) Specific recruitment of human cohesin to laser-induced DNA damage. J Biol Chem 277:45149–45153

    Article  PubMed  CAS  Google Scholar 

  63. Kim ST, Xu B, Kastan MB (2002b) Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev 16:560–570

    Article  PubMed  CAS  Google Scholar 

  64. Klein HL (1997) RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147:1533–1543

    PubMed  CAS  Google Scholar 

  65. Kobayashi T, Ganley AR (2005) Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309:1581–1584

    Article  PubMed  CAS  Google Scholar 

  66. Kobayashi T, Horiuchi T, Tongaonkar P, Vu L, Nomura M (2004) SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell 117:441–453

    Article  PubMed  CAS  Google Scholar 

  67. Kogoma T (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61:212–238

    PubMed  CAS  Google Scholar 

  68. Kolodner RD, Putnam CD, Myung K (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297:552–557

    Article  PubMed  CAS  Google Scholar 

  69. Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465

    PubMed  CAS  Google Scholar 

  70. Kurihara T, Tatsumi K, Takahashi H, Inoue M (1987) Sister-chromatid exchanges induced by ultraviolet light in Bloom's syndrome fibroblasts. Mutat Res 183:197–202

    PubMed  CAS  Google Scholar 

  71. Kuzminov A (1995) Instability of inhibited replication forks in E. coli. Bioessays 17:733–741

    Article  PubMed  CAS  Google Scholar 

  72. Kuzminov A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751–813

    PubMed  CAS  Google Scholar 

  73. Kuzminov A (2001) Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci USA 98:8241–8246

    Article  PubMed  CAS  Google Scholar 

  74. Kuzminov A, Schabtach E, Stahl FW (1994) Chi sites in combination with RecA protein increase the survival of linear DNA in Escherichia coli by inactivating exoV activity of RecBCD nuclease. EMBO J 13:2764–2776

    PubMed  CAS  Google Scholar 

  75. Lambert S, Watson A, Sheedy DM, Martin B, Carr AM (2005) Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121:689–702

    Article  PubMed  CAS  Google Scholar 

  76. Lehmann AR (1972) Post-replication repair of DNA in ultraviolet-irradiated mammalian cells. No gaps in DNA synthesized late after ultraviolet irradiation. Eur J Biochem 31:438–445

    Article  PubMed  CAS  Google Scholar 

  77. Lehmann AR (2005) The role of SMC proteins in the responses to DNA damage. DNA Repair 4:309–314

    Article  PubMed  CAS  Google Scholar 

  78. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  PubMed  CAS  Google Scholar 

  79. Liberi G, Maffioletti G, Lucca C, Chiolo I, Baryshnikova A, Cotta-Ramusino C, Lopes M, Pellicioli A, Haber JE, Foiani M (2005) Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19:339–350

    Article  PubMed  CAS  Google Scholar 

  80. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  PubMed  CAS  Google Scholar 

  81. Lisby M, Rothstein R, Mortensen UH (2001) Rad52 forms DNA repair and recombination centers during S phase. Proc Natl Acad Sci USA 98:8276–8282

    Article  PubMed  CAS  Google Scholar 

  82. Lobachev K, Vitriol E, Stemple J, Resnick MA, Bloom K (2004) Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr Biol 14:2107–2112

    Article  PubMed  CAS  Google Scholar 

  83. Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21:15–27

    Article  PubMed  CAS  Google Scholar 

  84. Losada A, Hirano T (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19:1269–1287

    Article  PubMed  CAS  Google Scholar 

  85. Lucca C, Vanoli F, Cotta-Ramusino C, Pellicioli A, Liberi G, Haber J, Foiani M (2004) Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23:1206–1213

    Article  PubMed  CAS  Google Scholar 

  86. Luder A, Mosig G (1982) Two alternative mechanisms for initiation of DNA replication forks in bacteriophage T4: priming by RNA polymerase and by recombination. Proc Natl Acad Sci USA 79:1101–1105

    Article  PubMed  CAS  Google Scholar 

  87. Malkova A, Ivanov EL, Haber JE (1996) Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci USA 93:7131–7136

    Article  PubMed  CAS  Google Scholar 

  88. Malone RE, Ward T, Lin S, Waring J (1990) The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast. Curr Genet 18:111–116

    Article  PubMed  CAS  Google Scholar 

  89. McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23:315–376

    PubMed  CAS  Google Scholar 

  90. McGlynn P (2004) Links between DNA replication and recombination in prokaryotes. Curr Opin Genet Dev 14:107–112

    Article  PubMed  CAS  Google Scholar 

  91. McGlynn P, Lloyd RG (2000) Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101:35–45

    Article  PubMed  CAS  Google Scholar 

  92. Michel B, Flores MJ, Viguera E, Grompone G, Seigneur M, Bidnenko V (2001) Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci USA 98:8181–8188

    Article  PubMed  CAS  Google Scholar 

  93. Morgan WF, Fero ML, Land MC, Winegar RA (1988) Inducible expression and cytogenetic effects of the EcoRI restriction endonuclease in Chinese hamster ovary cells. Mol Cell Biol 8:4204–4211

    PubMed  CAS  Google Scholar 

  94. Mosig G (1998) Recombination and recombination-dependent DNA replication in bacteriophage T4. Annu Rev Genet 32:379–413

    Article  PubMed  CAS  Google Scholar 

  95. Myung K, Datta A, Kolodner RD (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104:397–408

    Article  PubMed  CAS  Google Scholar 

  96. Myung K, Pennaneach V, Kats ES, Kolodner RD (2003) Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci USA 100:6640–6645

    Article  PubMed  CAS  Google Scholar 

  97. Nag DK, Suri M, Stenson EK (2004) Both CAG repeats and inverted DNA repeats stimulate spontaneous unequal sister-chromatid exchange in Saccharomyces cerevisiae. Nucleic Acids Res 32:5677–5684

    Article  PubMed  CAS  Google Scholar 

  98. Nasmyth K (2002) Segregating sister genomes: the molecular biology of chromosome separation. Science 297:559–565

    Article  PubMed  CAS  Google Scholar 

  99. Nassif N, Engels W (1993) DNA homology requirements for mitotic gap repair in Drosophila. Proc Natl Acad Sci USA 90:1262–1266

    Article  PubMed  CAS  Google Scholar 

  100. Onoda F, Seki M, Miyajima A, Enomoto T (2000) Elevation of sister chromatid exchange in Saccharomyces cerevisiae sgs1 disruptants and the relevance of the disruptants as a system to evaluate mutations in Bloom's syndrome gene. Mutat Res 459:203–209

    PubMed  CAS  Google Scholar 

  101. Onoda F, Takeda M, Seki M, Maeda D, Tajima J, Ui A, Yagi H, Enomoto T (2004) SMC6 is required for MMS-induced interchromosomal and sister chromatid recombinations in Saccharomyces cerevisiae. DNA Repair 3:429–439

    Article  PubMed  CAS  Google Scholar 

  102. Pages V, Fuchs RP (2003) Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 300:1300–1303

    Article  PubMed  CAS  Google Scholar 

  103. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  CAS  Google Scholar 

  104. Paulovich AG, Armour CD, Hartwell LH (1998) The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics 150:75–93

    PubMed  CAS  Google Scholar 

  105. Perry P, Evans HJ (1975) Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature 258:121–125

    Article  PubMed  CAS  Google Scholar 

  106. Petes TD (1980) Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell 19:765–774

    Article  PubMed  CAS  Google Scholar 

  107. Potts PR, Porteus MH, Yu H (2006) Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J 25:3377–3388

    Article  PubMed  CAS  Google Scholar 

  108. Prado F, Aguilera A (2005a) Partial depletion of histone H4 increases homologous recombination-mediated genetic instability. Mol Cell Biol 25:1526–1536

    Article  PubMed  CAS  Google Scholar 

  109. Prado F, Aguilera A (2005b) Impairment of replication fork progression mediates RNA pol II transcription-associated recombination. EMBO J 24:1267–1276

    Article  PubMed  CAS  Google Scholar 

  110. Prado F, Cortes-Ledesma F, Aguilera A (2004) The absence of the yeast chromatin assembly factor Asf1 increases genomic instability and sister chromatid exchange. EMBO Rep 5:497–502

    Article  PubMed  CAS  Google Scholar 

  111. Prado F, Cortes-Ledesma F, Huertas P, Aguilera A (2003) Mitotic recombination in Saccharomyces cerevisiae. Curr Genet 42:185–198

    PubMed  CAS  Google Scholar 

  112. Prakash L (1981) Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol Gen Genet 184:471–478

    Article  PubMed  CAS  Google Scholar 

  113. Puget N, Knowlton M, Scully R (2005) Molecular analysis of sister chromatid recombination in mammalian cells. DNA Repair 4:149–161

    Article  PubMed  CAS  Google Scholar 

  114. Ramey CJ, Howar S, Adkins M, Linger J, Spicer J, Tyler JK (2004) Activation of the DNA damage checkpoint in yeast lacking the histone chaperone anti-silencing function 1. Mol Cell Biol 24:10313–10327

    Article  PubMed  CAS  Google Scholar 

  115. Richardson C, Moynahan ME, Jasin M (1998) Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev 12:3831–3842

    PubMed  CAS  Google Scholar 

  116. Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715

    Article  PubMed  CAS  Google Scholar 

  117. Rothstein R, Michel B, Gangloff S (2000) Replication fork pausing and recombination or “gimme a break”. Genes Dev 14:1–10

    PubMed  CAS  Google Scholar 

  118. Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31:291–304

    Article  PubMed  CAS  Google Scholar 

  119. Rupp WD, Wilde CE 3rd, Reno DL, Howard-Flanders P (1971) Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J Mol Biol 61:25–44

    Article  PubMed  CAS  Google Scholar 

  120. Saintigny Y, Delacote F, Vares G, Petitot F, Lambert S, Averbeck D, Lopez BS (2001) Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J 20:3861–3870

    Article  PubMed  CAS  Google Scholar 

  121. Saleh-Gohari N, Bryant HE, Schultz N, Parker KM, Cassel TN, Helleday T (2005) Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol 25:7158–7169

    Article  PubMed  CAS  Google Scholar 

  122. Saleh-Gohari N, Helleday T (2004) Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res 32:3683–3688

    Article  PubMed  CAS  Google Scholar 

  123. Schar P, Fasi M, Jessberger R (2004) SMC1 coordinates DNA double-strand break repair pathways. Nucleic Acids Res 32:3921–3929

    Article  PubMed  Google Scholar 

  124. Seigneur M, Bidnenko V, Ehrlich SD, Michel B (1998) RuvAB acts at arrested replication forks. Cell 95:419–430

    Article  PubMed  CAS  Google Scholar 

  125. Shinohara M, Shita-Yamaguchi E, Buerstedde JM, Shinagawa H, Ogawa H, Shinohara A (1997) Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Genetics 147:1545–1556

    PubMed  CAS  Google Scholar 

  126. Sjogren C, Nasmyth K (2001) Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr Biol 11:991–995

    Article  PubMed  CAS  Google Scholar 

  127. Skalka A (1974) A replicator's view of recombination (and repair). In: Grell RR (ed) Mechanisms in recombination. Plenum Press, New York, pp 421–432

    Google Scholar 

  128. Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599–602

    Article  PubMed  CAS  Google Scholar 

  129. Solomon E, Bobrow M (1975) Sister chromatid exchanges: a sensitive assay of agents damaging human chromosomes. Mutat Res 30:273–278

    Article  PubMed  CAS  Google Scholar 

  130. Sonoda E, Matsusaka T, Morrison C, Vagnarelli P, Hoshi O, Ushiki T, Nojima K, Fukagawa T, Waizenegger IC, Peters JM, Earnshaw WC, Takeda S (2001) Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev Cell 1:759–770

    Article  PubMed  CAS  Google Scholar 

  131. Sonoda E, Sasaki MS, Morrison C, Yamaguchi-Iwai Y, Takata M, Takeda S (1999) Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol Cell Biol 19:5166–5169

    PubMed  CAS  Google Scholar 

  132. Strom L, Lindroos HB, Shirahige K, Sjogren C (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16:1003–1015

    Article  PubMed  Google Scholar 

  133. Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y (2000) Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5′-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20:3977–3987

    Article  PubMed  CAS  Google Scholar 

  134. Sutou S (1997) Reversal of DNA polarity as revealed by sister chromatid exchanges in ring chromosomes. Mutat Res 394:69–75

    PubMed  CAS  Google Scholar 

  135. Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630–670

    Article  PubMed  CAS  Google Scholar 

  136. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    Article  PubMed  CAS  Google Scholar 

  137. Szostak JW, Wu R (1980) Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 284:426–430

    Article  PubMed  CAS  Google Scholar 

  138. Takata M, Sasaki MS, Sonoda E, Fukushima T, Morrison C, Albala JS, Swagemakers SM, Kanaar R, Thompson LH, Takeda S (2000) The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol 20:6476–6482

    Article  PubMed  CAS  Google Scholar 

  139. Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17:5497–5508

    Article  PubMed  CAS  Google Scholar 

  140. Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, Thompson LH, Takeda S (2001) Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 21:2858–2866

    Article  PubMed  CAS  Google Scholar 

  141. Takeuchi Y, Horiuchi T, Kobayashi T (2003) Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17:1497–1506

    Article  PubMed  CAS  Google Scholar 

  142. Tercero JA, Longhese MP, Diffley JF (2003) A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11:1323–1336

    Article  PubMed  CAS  Google Scholar 

  143. Thompson LH, Brookman KW, Dillehay LE, Carrano AV, Mazrimas JA, Mooney CL, Minkler JL (1982) A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister-chromatid exchange. Mutat Res 95:427–440

    PubMed  CAS  Google Scholar 

  144. Torres-Ramos CA, Prakash S, Prakash L (2002) Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 22:2419–2426

    Article  PubMed  CAS  Google Scholar 

  145. Torres-Rosell J, Machin F, Farmer S, Jarmuz A, Eydmann T, Dalgaard JZ, Aragon L (2005) SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat Cell Biol 7:412–419

    Article  PubMed  CAS  Google Scholar 

  146. Trautinger BW, Jaktaji RP, Rusakova E, Lloyd RG (2005) RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol Cell 19:247–258

    Article  PubMed  CAS  Google Scholar 

  147. Tyler JK (2002) Chromatin assembly. Cooperation between histone chaperones and ATP-dependent nucleosome remodeling machines. Eur J Biochem 269:2268–2274

    Article  PubMed  CAS  Google Scholar 

  148. Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16:991–1002

    Article  PubMed  Google Scholar 

  149. Voelkel-Meiman K, Roeder GS (1990) Gene conversion tracts stimulated by HOT1-promoted transcription are long and continuous. Genetics 126:851–867

    PubMed  CAS  Google Scholar 

  150. Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11:2347–2358

    PubMed  CAS  Google Scholar 

  151. Wellinger RE, Prado F, Aguilera A (2006) Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol Cell Biol 26:3327–3334

    Article  PubMed  CAS  Google Scholar 

  152. Wiltzius JJ, Hohl M, Fleming JC, Petrini JH (2005) The Rad50 hook domain is a critical determinant of Mre11 complex functions. Nat Struct Mol Biol 12:403–407

    Article  PubMed  CAS  Google Scholar 

  153. Wolff S (1977) Sister chromatid exchange. Annu Rev Genet 11:183–201

    Article  PubMed  CAS  Google Scholar 

  154. Wolff S, Lindsley DL, Peacock WJ (1976) Cytological evidence for switches in polarity of chromosomal DNA. Proc Natl Acad Sci USA 73:877–881

    Article  PubMed  CAS  Google Scholar 

  155. Wu L, Hickson ID (2003) The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426:870–874

    Article  PubMed  CAS  Google Scholar 

  156. Xie A, Puget N, Shim I, Odate S, Jarzyna I, Bassing CH, Alt FW, Scully R (2004) Control of sister chromatid recombination by histone H2AX. Mol Cell 16:1017–1025

    Article  PubMed  CAS  Google Scholar 

  157. Ye X, Franco AA, Santos H, Nelson DM, Kaufman PD, Adams PD (2003) Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell 11:341–351

    Article  PubMed  CAS  Google Scholar 

  158. Zhang H, Lawrence CW (2005) The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc Natl Acad Sci USA 102:15954–15959

    Article  PubMed  CAS  Google Scholar 

  159. Zou H, Rothstein R (1997) Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90:87–96

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Diane Haun for style supervision. Research in the laboratory of A. A. is funded by grants SAF2003-00204 from the Spanish Ministry of Science and Education and CVI102 from Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Aguilera .

Editor information

Andrés Aguilera Rodney Rothstein

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cortés-Ledesma, F., Prado, F., Aguilera, A. (2006). Sister chromatid recombination. In: Aguilera, A., Rothstein, R. (eds) Molecular Genetics of Recombination. Topics in Current Genetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2006_0213

Download citation

Publish with us

Policies and ethics