Skip to main content

Abstract

The assembled sequence of the whole genome is a must nowadays in any industrially important species. The aim of this research program is to provide the industry and the community with a robust mink genome sequence assembly. It shall be complemented with the identification of widely distributed polymorphic single nucleotide polymorphisms (SNPs) organized into an array designed for undertaking linkage and association studies necessary for mapping, identifying and characterizing genes underlying any specific traits of interest in American mink. Genome assembly based on the sequences of individual clones from the mink Bacterial Artificial Chromosome (BAC) library would result in a draft genome of high quality and accuracy. We explore an alternative approach, called BAC-NGS (from next generation sequencing) that utilizes the BAC library as a solid backbone, complemented with shotgun sequences of the whole genome, for filling gaps for the final assembly. We tested different settings of the new approach in several pilot projects in order to assign the most efficacious approach to sequence assembly. Approximately 15% of the mink genome has so far been generated and assembled by means of this method. This sequencing project represents a long-term investment in the future mink fur industry and farming management, enhancing the development of applications in academic and industrial research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anistoroaei, R., Ansari, S., Farid, A., Benkel, B., Karlskov-Mortensen, P. and Christensen, K., 2009. An extended anchored linkage map and virtual mapping for the American mink genome based on homology to human and dog. Genomics 94(3): 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Anistoroaei, R, ten Hallers, B., Nefedov, M., Christensen, K. and de Jong P., 2011. Construction of an American mink Bacterial Artificial Chromosome (BAC) library and sequencing candidate genes important for the fur industry BMC Genomics 12: 354.

    PubMed  CAS  Google Scholar 

  • Anistoroaei, R., Krogh, A.K. and Christensen, K., 2012. A frameshift mutation in the LYST gene is responsible for the Aleutian color and the associated Chediak-Higashi syndrome in American mink, Animal Genetics, in press.

    Google Scholar 

  • Chowdhary, B.P. and Raudsepp, T., 2008. The Horse Genome Derby: racing from map to whole genome sequence Chromosome Research 16: 109–127.

    CAS  Google Scholar 

  • Gnerre, S., MacCallum, I., Przybylski, D., Ribeiro, F.J., Burton, J.N., Walker, B.J., Sharpe, T., Hall, G., Shea, T.P., Sykes, S., Berlin, A.M., Aird, D., Costello, M., Daza, R., Williams, L., Nicol, R., Gnirke, A., Nusbaum, C., Lander, E.S. and Jaffe, D.B., 2010. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. PNAS 108: 1513–1518.

    Article  PubMed  Google Scholar 

  • Gill, P., 2001. An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purpose. Int J Legal Med 114: 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Graphodatsky, A., Yang, F., Serdukova, N., Perelman, P., Zhdanova, N. and Ferguson-Smith, M., 2000. Dog chromosome-specific paints reveal evolutionary inter- and intrachromosomal rearrangements in the American mink and human. Cytogenet Cell Genet 90: 275–278.

    Article  PubMed  CAS  Google Scholar 

  • Hameister, H., Klett, C., Bruch, J., Dixkens, C., Vogel, W. and Christensen, K., 1997. Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chromos Res 5: 5–11.

    Article  CAS  Google Scholar 

  • Hillier, L.W., Marth, G.T., Quinlan, A.R., Dooling, D., Fewell, G., Barnett, D., Fox, P., Glasscock, J.I., Hickenbotham, M., Huang, W., Magrini, V.J., Richt, R.J., Sander, S.N., Stewart, D.A., Stromberg, M., Tsung, E.F., Wylie, T., Schedl, T., Wilson, R.K. and Mardis, E.R., 2008. Whole-genome sequencing and variant discovery in C. elegans. Nat Methods. 5: 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, E.K., Baranowska, I., Wade, C.M., Salmon Hillbertz, N.H.C., Zody, M.C., Anderson, N., Biagi, T.M., Patterson, N., Pielberg, G.R., Kulbokas, E.J., Comstock, K.E., Keller, E.T., Mesirov, J.P., von Euler, H., Kampe, O., Hedhammar, A., Lander, E.S., Andersson, G., Andersson, L. and Lindblad-Toh, K., 2007. Efficient mapping of mendelian traits in dogs through genome-wide association. Nature Genetics 39: 1321–1328.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, H.A., Larkin, D.M., Pontius, J. and O’Brien, S.J., 2009. Every genome sequence needs a good map. Genome Res 19: 1925–1928.

    Article  PubMed  CAS  Google Scholar 

  • Li, R, Zhu, H, Ruan, J, Qian, W, Fang, X, Shi, Z, Li, Y, Li, S, Shan, G, Kristiansen, K, Li, S, Yang, H, Wang, J and Wang, J., 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20: 265–72.

    Article  PubMed  CAS  Google Scholar 

  • Matukumalli, L.K., Lawley, C.T., Schnabel, R.D., Taylor, J.F., Allan, M.F., Heaton, M.P., O’Connell, J., Moore, S.S., Smith, T.P.L., Sonstegard, T.S. and Van Tassell, C.P., 2009. Development and characterization of a high density SNP genotyping assay for cattle. PLoS ONE 4(4): e5350.

    Article  PubMed  Google Scholar 

  • Nes, N.N., Einarsson E.J. and Lohi O., 1988. Beautiful fur animals — and their colour genetics.Scientifur, Hilleroed, Denmark. 271 pp.

    Google Scholar 

  • Wheeler, D.A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y.-J., Makhijani, V., Roth, G.T., Gomes, X., Tartaro, K., Niazi, F., Turcotte, C.L., Irzyk, G.P., Lupski, J.R., Chinault, C., Song, X.-z., Liu, Y., Yuan, Y., Nazareth, L., Qin, X., Muzny, D.M., Margulies, M., Weinstock, G.M., Gibbs, R.A. and Rothberg, J.M., 2008. The complete genome of an individual by massively parallel DNA sequencing. Nature 452: 872–876.

    Article  PubMed  CAS  Google Scholar 

  • Zerbino, D. and Birney, E. 2008. Velvet: Algorithms for de novo short read assembly using Bruijn graphs. Genome Res. 18(5): 821–829.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anistoroaei .

Editor information

P. F. Larsen S. H. Møller T. Clausen A. S. Hammer T. M. Lássen V. H. Nielsen A. H. Tauson L. L. Jeppesen S. W. Hansen J. Elnif J. Malmkvist

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Wageningen Academic Publishers The Netherlands

About this paper

Cite this paper

Anistoroaei, R., Christensen, K., Benkel, B. (2012). Sequencing of the mink genome: plans and perspectives. In: Larsen, P.F., et al. Proceedings of the Xth International Scientific Congress in fur animal production. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-760-8_31

Download citation

Publish with us

Policies and ethics