Skip to main content

Molecular Genetic Applications to the Diagnosis of Lymphoma

  • Chapter
Molecular Diagnostics

Abstract

One of the earliest descriptions of primary tumors of lymph nodes was by Thomas Hodgkin in 1832. His publication entitled “On Some Morbid Appearances of the Absorbent Glands and Spleen” reported the clinical characteristics and post mortem findings from seven patients with an unusual disease of lymph nodes (1). Some 30 yr later, the term “Hodgkin’s disease” was introduced by Sir Samuel Wilks in honor of the work of Thomas Hodgkin (2).

Today, the malignant lymphomas are regarded as a heterogeneous group of neoplasms, which can be broadly categorized into two groups: Hodgkin’s lymphoma (formerly Hodgkin’s disease) and non-Hodgkin’s lymphoma. These neoplasms most often arise in lymphoid tissues such as lymph nodes and spleen, but could arise virtually anywhere in the body. M a lignant lym-phoma comprises approx 5% of new cancer cases in the United States annually, with approx 53,400 new cases of non-Hodgkin’s lymphoma and 7,600 new cases of Hodgkin’s lym-phoma expected in 2003 (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodgkin, T. On some morbid appearances of the absorbent glands and spleen. Med–Chir. Trans. 17:69–97, 1832.

    Google Scholar 

  2. Wilks, S. Cases of enlargement of the lymphatic glands and spleen (or, Hodgkin’s disease), with remarks. Guys Hosp. Rep. 11:56–67, 1865.

    Google Scholar 

  3. Jemal, A., Murray, T., Samuels, A., et al. Cancer statistics, 2003. CA Cancer J. Clin 53:5–26, 2003.

    Article  PubMed  Google Scholar 

  4. Bertoli, L. F., and Burrows, P. D. Normal B-lineage cells: their differentiation and identification. Clin. Lab. Med. 8:15–30, 1988.

    CAS  PubMed  Google Scholar 

  5. Denning, S. M. and Haynes, B. F. Differentiation of human T cells. Clin. Lab. Med. 8:1–14, 1988.

    CAS  PubMed  Google Scholar 

  6. Jaffe, E. S., Harris, N. L., Stein, H., and Vardiman, J. eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoeitic and Lymphoid Tissues. IARC, Lyon, 2001.

    Google Scholar 

  7. Jaffe, E. S. The role of immunophenotypic markers in the classification of non-Hodgkin’s lymphomas. Semin. Oncol. 17:11–19, 1990.

    CAS  PubMed  Google Scholar 

  8. Campana, D. and Pui, C-H. Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 85:1416–1434, 1995.

    CAS  PubMed  Google Scholar 

  9. Sen, F., Vega, F, and Medeiros, L. J. Molecular genetic methods in the diagnosis of hematologic neoplasms. Semin. Diagn. Pathol. 19(2):, 72–93, 2002.

    PubMed  Google Scholar 

  10. Cooper, M. D. B lymphocytes: normal development and function. N. Engl. J. Med. 317:1452–1456, 1987.

    Article  CAS  PubMed  Google Scholar 

  11. Pan, L., Cesarman, E., and Knowles, D. M. Antigen receptor genes: structure, function, and genetic analysis of their rearrangements, Neoplastic Hematopathology, Knowles, D. M., ed., Lippincott, Williams and Wilkins, Philadelphia, PA, pp. 307–328, 2001.

    Google Scholar 

  12. Foon, K. A. and Todd, R. F. Immunologic classification of leukemia and lymphoma. Blood 68:1–31, 1986.

    CAS  PubMed  Google Scholar 

  13. Spits, H., Lanier, L. L., and Phillips, J. H. Development of human T and natural killer cells. Blood 85:2654–2670, 1995.

    CAS  PubMed  Google Scholar 

  14. Cossman, J., Uppenkamp, M., Sundeen, J., Coupland, R., and Raffeld, M. Molecular genetics and the diagnosis of lymphoma. Arch. Pathol. Lab. Med. 112:117–127, 1988.

    CAS  PubMed  Google Scholar 

  15. Cossman, J., and Uppenkamp, M. T cell gene rearrangements and the diagnosis of T cell neoplasms. Clin. Lab. Med. 8:31–44, 1988.

    CAS  PubMed  Google Scholar 

  16. Royer, H. D. and Reinherz, E. L. T lymphocytes: ontogeny, function, and relevance to clinical disorders. N. Eng. J. Med. 317: 1136–1142, 1987.

    Article  CAS  Google Scholar 

  17. Gill, J. I. and Gulley, M. L. Immunoglobulin and T cell receptor gene rearrangement. Hematol. Oncol. Clin. North Am. 8:751–770, 1994.

    CAS  PubMed  Google Scholar 

  18. Rezuke, W. N., Abernathy, E. C., and Tsongalis, G. J. Molecular diagnosis of B and T cell lymphomas: fundamental principles and clinical applications. Clin. Chem. 43:1814–1823, 1997.

    CAS  PubMed  Google Scholar 

  19. Cossman, J., Zehnbauer, B., Garrett, C. T., et al. Gene rearrangements in the diagnosis of lymphoma/leukemia. Guidelines for use based on a multiinstitutional study. Am. J. Clin. Pathol. 95:347–354, 1991.

    CAS  PubMed  Google Scholar 

  20. Farkas, D. H. The Southern blot: application to the B and T cell gene rearrangement test. Lab. Med. 23:723–729, 1992.

    Google Scholar 

  21. Beishuizen, A., Verhoeven, M. J., Mol, E. J., and van Dongen, J. J. M. Detection of immunoglobulin kappa light chain gene rearrangement patterns by Southern blot analysis. Leukemia 8:2228–2236, 1994.

    CAS  PubMed  Google Scholar 

  22. Hodges, K. A., Kosciol, C. M., Rezuke, W. N., Abernathy, E. C., Pastuszak, W. T., and Tsongalis, G. T. Chemiluminescent detection of gene rearrangements in hematologic malignancy. Ann. Clin. Lab. Sci. 26:114–118, 1996.

    CAS  PubMed  Google Scholar 

  23. Medeiros, L. J. and Weiss, L. M. The utility of the polymerase chain reaction as a screening method for the detection of antigen receptor gene rearrangements. Hum. Pathol. 25:1261–1263, 1994.

    Article  CAS  PubMed  Google Scholar 

  24. Macintyre, E. A. The use of the polymerase chain reaction in hematology. Blood Rev. 3:201–210, 1989.

    Article  CAS  PubMed  Google Scholar 

  25. Weiss, L. M. and Spagnolo, D. V. Assessment of clonality in lym-phoid proliferations. Am. J. Pathol. 142:1679–1682, 1993.

    CAS  PubMed  Google Scholar 

  26. McCarthy, K. P., Sloane, J. P., Kabarowski, J. H. S., Matutes, E., and Wiedemann, L. M. The rapid detection of clonal T-cell proliferations in patients with lymphoid disorders. Am. J. Pathol. 138:821–828, 1991.

    CAS  PubMed  Google Scholar 

  27. Ben-Ezra, J. Variable rate of detection of immunoglobulin heavy chain V-D-J rearrangement by PCR: a systematic study of 41 B-cell non-Hodgkin’s lymphomas and leukemias. Leuk. Lymph. 7:289–295, 1992.

    Article  CAS  Google Scholar 

  28. Diss, T. C., Peng, H., Wotherspoon, A. C., Isaacson, P. G., and Pan, L. Detection of monoclonality in low-grade B-cell lymphomas using the polymerase chain reaction is dependent on primer selction and lymphoma type. J. Pathol. 169:291–295, 1993.

    Article  CAS  PubMed  Google Scholar 

  29. Segal, G. H., Jorgensen, T., Masih, A. S., and Braylan, R. C. Optimal primer selection for clonality assessment by polymerase chain reaction analysis. Low grade B-cell lymphoproliferative disorders of non-follicular center cell type. Hum. Pathol. 25:1269–1275, 1994.

    Article  CAS  PubMed  Google Scholar 

  30. Slack, I. N., McCarthy, K. P., Wiedemann, L. M., and Sloane, J. P. Evaluation of sensitivity, specificity, and reproducibility of an optimized method for detecting clonal rearrangements of immunoglob-ulin and T-cell receptor genes in formalin-fixed, paraffin-embedded sections. Diagn. Mol. Pathol. 2:223–232, 1993.

    CAS  PubMed  Google Scholar 

  31. Algara, P., Caridad, S., Martinez, P., et al. Value of PCR detection of TCRγ gene rearrangments in the diagnosis of cutaneous lymphocytic infiltrates. Diagn. Mol. Pathol. 3:275–282, 1994.

    Article  CAS  PubMed  Google Scholar 

  32. Achille, A., Scarpa, A., Montresor, M., et al. Routine application of polymerase chain reaction in the diagnosis of monoclonality of B-cell lymphoid proliferations. Diagn. Mol. Pathol. 4:14–24, 1995.

    Article  CAS  PubMed  Google Scholar 

  33. Fodinger, M., Buchmayer, H., Schwarzinger, I., et al. Multiplex PCR for rapid detection of T-cell receptor gamma chain gene rearrangements in patients with lymphoproliferative diseases. Br. J. Haematol. 94:136–139, 1996.

    Article  CAS  PubMed  Google Scholar 

  34. Lozano, M. D., Tierens, A., Greiner, T. C., et al. Clonality analysis of B-lymphoid proliferations using the polymerase chain reaction. Cancer 77:1349–1355, 1996.

    Article  CAS  PubMed  Google Scholar 

  35. Abdel-Reheim, F. A., Edwards, E., and Arber, D. A. Utility of a rapid polymerase chain reaction panel for the detection of molecular changes in B-cell lymphoma. Arch. Pathol. Lab. Med. 120:357–363, 1996.

    CAS  PubMed  Google Scholar 

  36. Lombardo, J. F., Hwang, T. S., Maiese, R. L., Millson, A., and Segal, G. H. Optimal primer selection for clonality assessment by polymerase chain reaction analysis: Intermediate and high grade B-cell neoplasms. Hum. Pathol. 27:373–380, 1996.

    Article  CAS  PubMed  Google Scholar 

  37. Diaz-Cano, S. PCR-based alternative for diagnosis of immunoglob-ulin heavy chain gene rearrangement. Diagn. Mol. Pathol. 5:3–9, 1996.

    Article  CAS  PubMed  Google Scholar 

  38. 38. Ritter, J. H., Wick, M. R., Adesokan, P. N., et al. Assessment of clonality in cutaneous lymphoid infiltrates by polymerase chain reaction analysis of immunoglobulin heavy chain gene rearrangements. Am. J. Clin. Pathol. 108:60–68, 1997.

    CAS  PubMed  Google Scholar 

  39. Ashton-Key, M., Diss, T. C., Du, M. Q., et al. The value of the poly-merase chain reaction in the diagnosis of cutaneous T-cell infiltrates. Am. J. Surg. Pathol. 21:743–747, 1997.

    Article  CAS  PubMed  Google Scholar 

  40. Tsongalis, G. J., Stevenson, A. J., Hodges, K. A., and Rezuke, W. N. Clonal analysis of B-cell lymphoproliferative disorders. Eur. J. Lab. Med. 3:142–145, 1998.

    Google Scholar 

  41. Sioutos, N., Bagg, A., Michaud, G. Y., et al. Polymerase chain reaction versus Southern blot hybridization. Detection of immunoglob-ulin heavy-chain gene rearrangements. Diagn. Mol. Pathol. 4:8–13, 1995.

    Article  CAS  PubMed  Google Scholar 

  42. Lehman, C. M., Sarago, C., Nasim, S., Comerford, J., Karcher, D. S., and Garrett, C. T. Comparison of PCR with Southern hybridization for the routine detection of immunoglobulin heavy chain gene rearrangements. Am. J. Clin. Pathol. 103:171–176, 1995.

    CAS  PubMed  Google Scholar 

  43. Tbakhi, A. and Tubbs, R. R. Utility of the polymerase chain reaction in detecting B cell clonality in lymphoid neoplasms. Cancer 77:1223–1225, 1996.

    Article  CAS  PubMed  Google Scholar 

  44. Kuppers, R., Zhao, M., Rajewsky, K., and Hansmann, M. L. Detection of clonal B cell populations in paraffin-embedded tissues by polymerase chain reaction. Am. J. Pathol. 143:230–239, 1993.

    CAS  PubMed  Google Scholar 

  45. Inghirami, G., Szabolcs, M. J., Yee, H. T., Corradini, P., Cesarman, E., and Knowles, D. M. Detection of immunoglobulin gene rearrangement of B cell non-Hodgkin’s lymphomas and leukemias in fresh, unfixed and formalin fixed, paraffin-embedded tissue by polymerase chain reaction. Lab. Invest. 68:746–757, 1993.

    CAS  PubMed  Google Scholar 

  46. Reed, T. J., Reid, A., Wallberg, K., O’Leary, T. J., and Frizzera, G. Determination of B cell clonality in paraffin-embedded lymph nodes using the polymerase chain reaction. Diagn. Mol. Pathol. 2:42–49, 1993.

    CAS  PubMed  Google Scholar 

  47. Segal, G. H., Jorgensen, T., Scott, M., and Braylan, R. C. Optimal primer selection for clonality assessement by polymerase chain reaction analysis: II. Follicular lymphomas. Hum. Pathol. 25: 1276–1282, 1994.

    Article  CAS  PubMed  Google Scholar 

  48. Siebert, R. and Weber-Matthiesen, K. Fluorescence in situ hybridization as a diagnostic tool in malignant lymphomas. Histochem. Cell. Biol. 108:391–402, 1997.

    Article  CAS  PubMed  Google Scholar 

  49. Kluin, P. H. and Schuuring, E. FISH and related techniques in the diagnosis of lymphoma. Cancer Surv. 30:3–20, 1997.

    CAS  PubMed  Google Scholar 

  50. Remstein, E. D., Kurtin, P. J., Buno, I., et al. Diagnostic utility of fluorescence in situ hybridization in mantle cell lymphoma. Br. J. Haematol. 110:856–862, 2000.

    Article  CAS  PubMed  Google Scholar 

  51. Medeiros, L. J. and Carr, J. Overview of the role of molecular methods in the diagnosis of malignant lymphomas. Arch. Pathol. Lab. Med. 123:1189–1207, 1999.

    CAS  PubMed  Google Scholar 

  52. Tam, W. and Dalla-Favera, R. Protooncogenes and tumor suppressor genes in hematopoietic malignancies, in Neoplastic Hematopathology, Knowles, D. M., ed., Lippincott, Williams and Wilkins, Philadelphia, PA, 2001, pp. 329–364.

    Google Scholar 

  53. Korsmeyer, S. J. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80:879–886, 1992.

    CAS  PubMed  Google Scholar 

  54. Crisan, D., Chen, S-T., and Weil, S. C. Polymerase chain reaction in the diagnosis of chromosomal breakpoints. Hematol. Oncol. Clin. North. Am. 8:725–750, 1994.

    CAS  PubMed  Google Scholar 

  55. Ngan, B-Y., Nourse, J., and Cleary, M. L. Detection of chromosomal translocation t(14;18) within the minor cluster region of bcl-2 by polymerase chain reaction and direct genomic sequencing of the enzymatically amplified DNA in follicular lymphomas. Blood 73:1759–1762, 1989.

    CAS  PubMed  Google Scholar 

  56. Cory, S., Activation of cellular oncogenes in hemopoietic cells by chromosome translocation. Adv. Cancer Res. 47:189–234, 1986.

    Article  CAS  PubMed  Google Scholar 

  57. Adams, J. M., Gerondakis, S., Webb, E., Mitchell, J., Bernard, O., and Cory, S. Transcriptionally active DNA region that rearranges frequently in murine lymphoid tumors. Proc. Natl. Acad. Sci. USA 79:6966–6970, 1982.

    Article  CAS  PubMed  Google Scholar 

  58. Adams, J. M., Gerondakis, S., Webb, E., Corcoran, L. M., and Cory, S. Cellular myc oncogene is altered by chromosome translocation to an immunoglobulin locus in murine plasmacytomas and is rearranged similarly in human Burkitt lymphomas. Proc. Natl. Acad. Sci. USA 80:1982–1986, 1983.

    Article  CAS  PubMed  Google Scholar 

  59. Taub, R., Kirsch, I., Morton, C., et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt and murine plasmacytoma cells. Proc. Natl. Acad. Sci. USA 79:7837–7841, 1982.

    Article  CAS  PubMed  Google Scholar 

  60. Dalla-Favera, R., Martinotti, S., Gallo, R. C., Erikson, J., and Croce, C. M. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B cell lymphomas. Science 219:963–967, 1983.

    Article  CAS  PubMed  Google Scholar 

  61. Bernard, O. Cory, S., Gerondakis, S., Webb, E., and Adams, J. M. Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumors. EMBO J. 2:2375–2383, 1983.

    CAS  PubMed  Google Scholar 

  62. Cory, S., Vaux, D. L., Strasser, A., Harris, A. W., and Adams, J. M. Insights from Bcl-2 and myc: malignancy involves abrogation of apoptosis as well as sustained proliferation. Cancer Res. 59:1685s–1692s, 1999.

    CAS  PubMed  Google Scholar 

  63. Yano, T., Sander, C. A., Clark, H. M., Dolezal, M. V., Jaffe, E. S., and Raffeld, M. Clustered mutations in the second exon of the myc gene in sporadic Burkitt’s lymphoma. Oncogene 8:2741–2748, 1993.

    CAS  PubMed  Google Scholar 

  64. Cheng, S. W. G., Davies, K. P., Yung, E., Beltran, R. J., Yu, J., and Kalpana, G.V. C-myc interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat. Genet. 22:102–105, 1999.

    Article  CAS  PubMed  Google Scholar 

  65. Facchini, L.M. and Penn, l. Z. The molecular role of myc in growth and transformation: recent discoveries lead to new insights. FASEB J. 12:633–651, 1998.

    CAS  PubMed  Google Scholar 

  66. Henriksson, M. and Luscher, B. Proteins of the myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res. 68:109–182, 1996.

    Article  CAS  PubMed  Google Scholar 

  67. Hecht, J. L. and Aster, J. C. Molecular biology of Burkitt’s lymphoma. J. Clin. Oncol. 18:3707–3721, 2000.

    CAS  PubMed  Google Scholar 

  68. Williams, M. E., Westermann, C. D., and Swerdlow, S. H. Genotypic characterization of centrocytic lymphoma: frequent rearrangement of the chromosome 11 bcl-1 locus. Blood 76:1387–1391, 1990.

    CAS  PubMed  Google Scholar 

  69. Armitage, J. O. A clinical evaluation of the International Study Group Classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood 89(11): 3909–3918, 1997.

    Google Scholar 

  70. Fiel-Gan, M. D., Almeida, L., Rose, D. C., et al. Proliferative fraction, bcl-1 gene translocation, and p53 mutation status as markers in mantle cell lymphoma. Int. J. Mol. Med. 3:373–379, 1999.

    CAS  PubMed  Google Scholar 

  71. Seto, M., Yamamoto, K., Iida, S., et al. Gene rearrangement and overexpression of PRAD-1 in lymphoid malignancy with t(11;14)(q13;q32) translocation. Oncogene 7:1401–1406, 1992.

    CAS  PubMed  Google Scholar 

  72. Motokura, T., Bloom, T., Kim, H. G., et al. A novel cyclin encoded by bcl-1 linked candidate oncogene. Nature 350:512–515, 1991.

    Article  CAS  PubMed  Google Scholar 

  73. Argatoff, L. H., Connors, J. M., Klasa, R. J., Horsman, D. E., and Gascoyne, R. D. Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood 89:2067–2078, 1997.

    CAS  PubMed  Google Scholar 

  74. Chibbar, R., Leung, K., McCormick, S., et al. bcl-1 gene rearrangements in mantle cell lymphoma: a comprehensive analysis of 118 cases, including B-5 fixed tissue, by polymerase chain reaction and Southern transfer analysis. Mod. Pathol. 11:1089–1097, 1998.

    CAS  PubMed  Google Scholar 

  75. Molot, R. J., Meeker, T. C., Wittwer, C. T., et al. Antigen expression and polymerase chain reaction amplification of mantle cell lymphomas. Blood 83:1626–1631, 1994.

    CAS  PubMed  Google Scholar 

  76. Williams, M. E., Swerdlow, S. H., Rosenberg, C. L., and Arnold, A. Characterization of chromosome 11 translocation breakpoints at the bcl-1 and PRAD1 loci in centrocytic lymphoma. Cancer Res. 52:5541s–5544s, 1992.

    CAS  PubMed  Google Scholar 

  77. Williams, M. E., Meeker, T. C., and Swerdlow, S. H. Rearrangement of the chromosome 11 bcl-1 locus in centrocytic lymphoma: analysis with multiple breakpoint probes. Blood 78:493–498, 1991.

    CAS  PubMed  Google Scholar 

  78. Williams, M. E., Swerdlow, S. H., and Meeker, T. C. Chromosome t(11;14)(q13;q32) breakpoints in centrocytic lymphoma are highly localized at the bcl-1 major translocation cluster. Leukemia 7:1437–1440, 1993.

    CAS  PubMed  Google Scholar 

  79. Campo, E., Raffeld, M., and Jaffe, E. S. Mantle cell lymphoma. Semin. Hematol. 36(2):115–127, 1999.

    CAS  PubMed  Google Scholar 

  80. Swerdlow, S. H. and Williams, M. E. From centrocytic to mantle cell lymphoma: a clinicopathologic and molecular review of 3 decades. Hum. Pathol. 33(1):7–20, 2002.

    Article  CAS  PubMed  Google Scholar 

  81. Hanken, R. C. and Hunter S. V. Mantle cell lymphoma: molecular and immunophenotypic diagnostic aids. Arch. Pathol. Lab. Med. 123:1182–1188, 1999.

    Google Scholar 

  82. Baron, B. W., Stanger, R. R., Hume, E., et al. Bcl-6 encodes a sequence specific DNA binding protein. Genes Chromosomes Cancer 13:221–224, 1995.

    Article  CAS  PubMed  Google Scholar 

  83. Kerckaert, J. P., Deweindt, C., Tilly, H., et al. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat. Genet. 5:66–70, 1993.

    Article  CAS  PubMed  Google Scholar 

  84. Ye, B. H., Rao, P. H., Chaganti, R. S. K., and Dalla-Favera, R. Cloning of bcl-6, the locus involved in chromosome translocations affecting band 3q27 in B cell lymphoma. Cancer Res. 53:2732–2735, 1993.

    CAS  PubMed  Google Scholar 

  85. Kawamata, N., Nakamura, Y., Miki, T., et al. Detection of chimaeric transcripts of the immunoglobulin heavy chain and bcl6 genes by reverse transcriptase polymerase chain reaction in B cell non-Hodgkin’s lymphomas. Br. J. Haematol. 100:484–489, 1998.

    Article  CAS  PubMed  Google Scholar 

  86. Muramatsu, M., Akasaka, T., Kadowaki, N., et al. Rearrangement of the bcl6 gene in B cell lymphoid neoplasms: comparison with lymphomas associated with bcl2 rearrangement. Br. J. Haematol. 93:911–920, 1996.

    Article  CAS  PubMed  Google Scholar 

  87. Niu, H. The proto-oncogene BCL-6 in normal and malignant B cell development. Hematol. Oncol. 20(4):155–66, 2002.

    Article  PubMed  Google Scholar 

  88. Cattoretti, G., Chang, C. C., Cechova, K., et al. BCL-6 protein is expressed in germinal-center B cells. Blood 86(1):45–53, 1995.

    CAS  PubMed  Google Scholar 

  89. Lo Coco, F., Ye, B. H., Lista, F., et al. Rearrangements of the BCL-6 gene in diffuse large cell non-Hodgkin’s lymphoma. Blood 83(7):1757–1759, 1994.

    PubMed  Google Scholar 

  90. Mason, D. Y., Bastard, C., Romokh, R., et al. CD30-positive large cell lymphomas (“Ki-1 lymphoma”) are associated with a chromosomal translocation involving 5q35. Br. J. Haematol. 74:161, 1990.

    Article  CAS  PubMed  Google Scholar 

  91. Morris, S. W., Kirstein, M. N., Valentine, M. B., et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281, 1994.

    Article  CAS  PubMed  Google Scholar 

  92. Lamant, L., Meggetto, F., Al Saati, T., et al. High incidence of the t(2;5)(q35) translocation in anaplastic large cell lymphoma and its lack of detection in Hodgkin’s disease. Comparison of cytogenetic analysis, reverse transcriptase polymerase chain reaction, and P-80 immunostaining. Blood 87:284–291, 1996.

    CAS  PubMed  Google Scholar 

  93. Jaffe, E. S. Anaplastic large cell lymphoma: the shifting sands of hematopathology. Mod. Pathol. 14(3):219–228, 2001.

    Article  CAS  PubMed  Google Scholar 

  94. Kutok, J. L. and Aster, J. C. Molecular biology of anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma. J. Clin. Oncol. 20(17):3691–3702, 2002.

    Article  CAS  PubMed  Google Scholar 

  95. Stein, H., Foss, H. D., Durkop H., et al. CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic and clinical features. Blood 96(12):3681–3695, 2000.

    CAS  PubMed  Google Scholar 

  96. Haluska, F. G., Brufsky, A. M., and Canellos, G. P. The cellular biology of the Reed-Sternberg cell. Blood 84:1005–1019, 1994.

    CAS  PubMed  Google Scholar 

  97. Chan, W. C. Cellular origin of nodular lymphocyte-predominant Hodgkin’s lymphoma: immunophenotypic and molecular studies. Semin. Hematol. 36(3):242–252, 1999.

    CAS  PubMed  Google Scholar 

  98. Stein, H. and Hummel, M. Cellular origin and clonality of classic Hodgkin’s lymphoma: immunophenotypic and molecular studies. Semin. Hematol. 36(3):233–241, 1999.

    CAS  PubMed  Google Scholar 

  99. Marafioti, T., Hummel, M., Foss H. D., et al. Hodgkin and Reed–Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglob-ulin gene rearrangements but defective immunoglobulin transcription. Blood 95(4):1443–1450, 2000.

    CAS  PubMed  Google Scholar 

  100. Weiss, L. M., Strickler, J. G., Hu, E., Warnke, R. A., and Sklar, J. Immunoglobulin gene rearrangements in Hodgkin’s disease. Hum. Pathol. 17:1009–1014, 1986.

    Article  CAS  PubMed  Google Scholar 

  101. Marafioti, T., Anagnostopoulos, I., Foss, H. D., et al. Origin of nodular lymphocyte-predominant Hodgkin’s disease from a clonal expansion of highly mutated germinal-center B cells. N. Engl. J. Med. 337(7):453–458, 1997.

    Article  CAS  PubMed  Google Scholar 

  102. Corradini, P., Ladetto, M., Pileri, A., and Tarella, C. Clinical relevance of minimal residual disease monitoring in non-Hodgkin’s lymphoma: a critical reappraisal of molecular strategies. Leukemia 13:1691–1695, 1999.

    Article  CAS  PubMed  Google Scholar 

  103. Negrin, R. S. and Blume, K. G. The use of the polymerase chain reaction for the detection of minimal residual malignant disease. Blood 78:255–258, 1991.

    CAS  PubMed  Google Scholar 

  104. Sklar, J. Polymerase chain reaction: The molecular microscope of residual disease. J. Clin. Oncol. 9:1521–1524, 1991.

    CAS  PubMed  Google Scholar 

  105. Corradini, P., Stolfi, M., Cherasco, C., et al. Molecular monitoring of minimal residual disease in follicular and mantle cell non-Hodgkin’s lymphomas treated with high-dose chemotherapy and peripheral blood progenitor cell autografting. Blood 89:724–731, 1997.

    CAS  PubMed  Google Scholar 

  106. Wu, G. Q., Sharp, J. G., Wu, G., et al. The detection of minimal lymphoma by molecular and combined culture-molecular methods. Br. J. Haematol. 99:873–881, 1997.

    Article  CAS  PubMed  Google Scholar 

  107. Dolken, G. Detection of minimal residual disease. Adv. Cancer Res. 82:133–185, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rezuke, W.N., Tsongalis, G.J. (2006). Molecular Genetic Applications to the Diagnosis of Lymphoma. In: Coleman, W.B., Tsongalis, G.J. (eds) Molecular Diagnostics. Humana Press. https://doi.org/10.1385/1-59259-928-1:393

Download citation

  • DOI: https://doi.org/10.1385/1-59259-928-1:393

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-356-5

  • Online ISBN: 978-1-59259-928-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics