Skip to main content

Molecular Diagnostics in Coagulation

  • Chapter
Molecular Diagnostics

Abstract

Coagulation testing has evolved from the use of the manual tilt-tube clotting time in the early 1900’s to the use of molecular diagnostics today. Over the years, the measurement of a clot endpoint has been the basis of testing. Automated instruments have replaced the manual visual methods and allowed for precise measurements of the clot endpoint. In addition, immuno-logic and chromogenic methodology has also been adapted into the coagulation laboratory, therefore providing an additional antigenic and enzymatic perspective. Today, most modern automated coagulation instruments offer a single test platform that incorporates optic, immunologic, and chromogenic methods. The arrival of molecular diagnostics now adds another dimension for the evaluation of hemostatic defects.

Historically, coagulation testing was confined mostly to the screening or work-up of patients with bleeding disorders. The availability of routine laboratory tests for patients with thrombosis has slowly increased over the years and the demand for this testing continues to grow. Molecular diagnostics has found an important role in this area of coagulation disorders. DNA-based tests are available for detection of the Factor V Leiden mutation, the Prothrombin 20120A mutation, and the methyl-enetetrahydrofolate reductase mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olson, J. D. College of American Pathologists Consensus Conference XXXVI: Diagnostic Issues in Thrombophilia. Arch. Pathol. Lab. Med. 126:1277–1279, 2002.

    Google Scholar 

  2. Khoury, M. J., McCabe L. L., and McCabe E. R. B. Genomic medicine: population screening in the age of genomic medicine. N. Engl. J. Med. 348(1):50–58, 2003.

    Article  CAS  PubMed  Google Scholar 

  3. Mann, K. G. Biochemistry and physiology of blood coagulation. Thromb. Haemost. 82:165–174,1999.

    CAS  PubMed  Google Scholar 

  4. Brandt, J. T. Overview of hemostasis, in Clinical Laboratory Medicine, McClatchey, K. D., ed., Lippincott Williams & Wilkins, Philadlephia, PA, 2002, pp. 988–1009.

    Google Scholar 

  5. de Groot, P. G. The role of von Willebrand factor in platelet function. Sem in Thromb. Hemost. 28:133–138, 2002.

    Article  Google Scholar 

  6. Morrissey, J. H. Tissue factor and factor VII initiation of coagulation, in Hemostasis and Thrombosis, Colman, R. W., Hirsh, J., Marder, V. J., Clowes, A. W.,and George, J. N. ed., Lippincott Williams and Wilkins, Philadelphia, PA, 2001, pp. 89–101.

    Google Scholar 

  7. Esmon, C. T. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J. Biol. Chem. 264:4743–4746, 1989.

    CAS  PubMed  Google Scholar 

  8. Collen, D. The plasminogen (fibrinolytic) system. Thromb. Haemost. 82:259–270, 1999.

    CAS  PubMed  Google Scholar 

  9. Tefferi, A., Wieben, E., Dewald, G. W., Whiteman, D. A. H., Bernard, M. E., and Spelsberg, T. C. Primer on medical genomics: Part II: Background principles and methods on molecular genetics. Mayo Clin. Proc. 77:785–808, 2002.

    Article  CAS  PubMed  Google Scholar 

  10. Rennert, H. and Leonard, D. G. B. Basic principles of molecular biology, in Diagnostic Molecular Pathology, W. B. Saunders, Philadelphia, PA, 2003, pp. 25–51.

    Google Scholar 

  11. Reitsma, P. H. Genetic Principles underlying disorders of procoagulant and anticoagulant proteins, in Hemostasis and Thrombosis, Colman, R. W., Hirsh, J., Marder, V. J., Clowes, A. W., and George, J. N. ed., Lippincott Williams and Wilkins, Philadelphia, PA, 2001, pp. 59–87.

    Google Scholar 

  12. Lane, D. A. and Grant, P. J. Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 95:1517–1532, 2000.

    CAS  PubMed  Google Scholar 

  13. Kottke-Marchant, K. Genetic polymorphisms associated with venous and arterial thrombosis. Arch. Pathol. Lab. Med. 126:295–304, 2002.

    CAS  PubMed  Google Scholar 

  14. Franco, R. F. Gene polymorphism of the haemostatic system and the risk of arterial thrombotic disease. Br. J. Haematol. 115:491–506, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. Bertina, R. M. Molecular risk factors for thrombosis. Thromb. Haemost. 82:601–609, 1999.

    CAS  PubMed  Google Scholar 

  16. Humphries, S. E., Panahloo, A., Montgomery, H.E., Green, F., and Yudkin, J. Gene–environment interaction in the determination of levels of haemostatic levels involved in thrombosis and fibrinolysis. Thromb. Hemost. 78:457–461, 1997.

    CAS  Google Scholar 

  17. Seligsohn, U. and Zivelin, A. Thrombophilia as a multigenic disorder. Thromb. Haemost. 98:297–301, 1997

    Google Scholar 

  18. Rosendaal, F. R. Venous thrombosis: a multicausal disease. Lancet 353:1167,1999.

    Article  CAS  PubMed  Google Scholar 

  19. Ridker, P. M., Miletich, J. P., Hennekens, C. H., and Buring, J. E. Ethnic distribution of factor V Leiden in 4047 men and women. Implications for venous thromboembolism screening. JAMA 277:1305–1307, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. Marlar, R. A. and Neumann, A. Neonatal purpura fulminans due to homozygous protein C or protein S deficiencies. Semin. Thromb. Haemost. 16:299–310, 1990.

    Article  CAS  Google Scholar 

  21. Tuddenham, E. G. D., Schwaab, R., Seehafer, J., et al. Haemophilia A : database of nucleotide substitutions, deletions, insertions, and rearrangements of the factor VIII gene, second edition. Nucleic Acids Res. 22:4861–4868, 1994.

    Google Scholar 

  22. Kazazian, H. H., Wong, C., Youssoufian, H., Scott, A. F., Phillips, D. G., and Antonarakis, S. E. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–166, 1998.

    Article  Google Scholar 

  23. Fijnvandraat, K., Turenhout, E. A., van den Brink, E. N., et al. The missense mutation Arg503→Cys is related to antibody formation in a patient with mild hemophilia A. Blood 89: 4371–4377, 1997.

    CAS  PubMed  Google Scholar 

  24. Gianelli, F., Green P. M., Sommer, S. S., et al. Haemophilia B: database of point mutations and short addition and deletions-eighth edition. Nucleic Acid Res. 26:265–268, 1998.

    Article  Google Scholar 

  25. Briet, E., Bertina, R. M., van Tilberg, N. H., and Veltkamp, J. J., Haemophilia B Leiden: a sex linked hereditary disorder that improves after puberty. N. Engl. J. Med. 306:788–790, 1982.

    Article  CAS  PubMed  Google Scholar 

  26. Oldenberg, J., Quenzel, E. M., Harbrecht, U., et al. Missense mutations at ALA-10 in the factor IX propeptide: an insignificant variant in normal life but a decisive cause of bleeding during oral anticoagulant therapy. Br. J. Haematol. 98:240–244, 1997.

    Article  Google Scholar 

  27. Nichols W. C., and Ginsburg, D. Von Willebrand disease. Medicine 76:1–20, 1997.

    Article  CAS  PubMed  Google Scholar 

  28. Schneppenheim, R., Budde, U., and Ruggeri, Z. M. A molecular approach to the classification of von Willebrand disease. Baillieres Clin. Haematol. 14:281–298, 2001.

    CAS  Google Scholar 

  29. Cooper, D. N., Millar, D. S., Wacey, A., et al. Inherited factor VII deficiency: molecular genetics and pathophysiology. Thromb. Hemost. 78:151–160, 1997.

    CAS  Google Scholar 

  30. Cooper, D. N., Millar, D. S., Wacey, A., et al. Inherited factor X deficiency: molecular genetics and pathophysiology. Thromb. Hemost. 78:161–172, 1997.

    CAS  Google Scholar 

  31. Asakai, R., Chung, D. W., Davie, E. W., and Seligsohn, U. Factor XI deficiency in Ashkenasi Jews in Israel. N. Engl. J. Med. 326: 153–158, 1996.

    Google Scholar 

  32. Schloesser, M., Zeerleder, S., Lutze, G., et al. Mutations in the human factor XII gene. Blood 90:3967–3977, 1997.

    CAS  PubMed  Google Scholar 

  33. Anwar, R. and Miloszewski, K. J. Factor XIII deficiency. Br. J. Haematol. 107:468–484, 1999.

    Article  CAS  PubMed  Google Scholar 

  34. Cunningham, M. T., Brandt, J. T., Laposata, M., and Olson, J. D. Laboratory diagnosis of dysfibrinogenemia. Arch. Pathol. Lab. Med. 126:499–505, 2002.

    PubMed  Google Scholar 

  35. Dahlbach, B., Carlsson, M., and Svensson, P. J., Familial throm-bophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc. Natl. Acad. Sci. USA 90:1004–1008, 1993.

    Article  Google Scholar 

  36. Bertina, R. M., Koeleman, B. P., Koster, T., et al. Mutation in blood coagulation factor V associated with resistance of activated protein C. Nature 369:64–67, 1994.

    Article  CAS  PubMed  Google Scholar 

  37. Williamson, D., Brown, K., Luddington R., Baglin, C., and Baglin, T. Factor V Cambridge, a new mutation (arg306-Thro) associated with resistance of activated Protein C. Blood 91:1140–1144, 1998.

    CAS  PubMed  Google Scholar 

  38. Chan, W. P., Lee, C. K., Kwong, Y. L., et al. A novel mutation of Arg 306 of factor V gene in Hong Kong Chinese. Blood 91:1135–1139, 1998.

    CAS  PubMed  Google Scholar 

  39. de Visser, M. C. H., Rosendaal, F. R., and Bertina, R. M. A reduced sensitivity for activated protein C in the absence of factor V Leiden increases the risk of venous thrombosis. Blood 93:1271, 1999.

    PubMed  Google Scholar 

  40. Bernardi, F., Faioni, E. M., Castoldi, E., Castaman, G., Sacchi, E., and Mannucci, P. M. A factor V genetic component differing from factor V R506Q contributes to the activated protein C resistance phenotype. Blood 90:1552–1557, 1997.

    CAS  PubMed  Google Scholar 

  41. Alhenc-Gelas, M., Nicaud, V., Gandrille, S., et al. The factor V gene A4070G mutation and the risk of venous thrombosis. Thromb. Haemost. 81:193, 1999.

    CAS  PubMed  Google Scholar 

  42. Poort, S. R., Rosendaal, F. R., Reitsma, P. H., and Bertina, R. M. A common genetic variation in the 3-untranslated region of the pro-thrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood. 88:3698–3703, 1996.

    CAS  PubMed  Google Scholar 

  43. Gehring, N. H., Frede, U., New-Yilik, G., et al. Increased efficiency of mRNA 3end formation: a new genetic mechanism contributing to hereditary thrombophilia. Nat. Genet. 28:389–392, 2001.

    Article  CAS  PubMed  Google Scholar 

  44. Egeberg, O. Inherited antithrombin deficiency causing throm-bophilia. Thromb. Diath. Haemorrh. 12:516–530, 1965.

    Google Scholar 

  45. Finazzi, G., Caccia, R., and Barbui, T. Different prevalences of thromboembolism in the subtypes of congenital antithrombin III deficiency: review of 404 cases. Thromb. Haemost. 58:1094, 1987.

    CAS  PubMed  Google Scholar 

  46. Reitsma, P. H., Bernardi, F., Doig, R. G., et al. Protein C deficiency: a database of mutations, 1995 update. On behalf of the subcommittee on Plasma Coagulation Inhibitors of the Scientific and Standardization Committee of the ISTH (1991). Thromb. Hemost. 73:876–889, 1995.

    CAS  Google Scholar 

  47. Gandrille, S., Borgel, D., Ireland, H., et al. Protein S deficiency: a database of mutations. For the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society of Thrombosis and Hemostasis. Thromb. Haemost. 77:1201–1214, 1997.

    CAS  PubMed  Google Scholar 

  48. Ploos van Amstel, J. K., van der Zanden, A. L., Bakker, E., Reitsma, P. H., and Bertina, R. M. Two genes homologues with human protein S cDNA are located on chromosome 3. Thromb. Haemost. 58:982–987, 1987.

    Google Scholar 

  49. Ohlin, A. K., Norlund, L., and Marlar, R. A. Thrombomoduliin gene variations and thromboembolic disease. Thromb. Haemost. 78:396–400, 1997.

    CAS  PubMed  Google Scholar 

  50. Van der Velden, P. A, Krommenhoek-Van Es, T, Alaart, C. F., Bertina, R. M., and Reitsma, P. H. A frequent thrombomodulin amino acid dimorphism is not associated with thrombophilia. Thromb. Haemost. 65:511–513, 1991.

    PubMed  Google Scholar 

  51. Rosendaal, F. R., High levels of VIII and venous thrombosis. Thromb. Haemost. 83:1–2, 2000.

    CAS  PubMed  Google Scholar 

  52. Nigel, S. K. and McGlennen, R. C. Hyperhomocysteinemia and thrombophilia. Arch. Pathol. Lab. Med. 126:1367–1375, 2002.

    Google Scholar 

  53. Froost, P., Blom, H. J., Milos, R., et al. A candidate genetic risk factor for vascular disease. A common mutation in methylenetetrahy-drofolate reductase. Nat Genet. 10:111–113, 1995.

    Article  Google Scholar 

  54. Hanson, N. Q., Aras, O., Yang, F., and Tsai, M. Y. C677T and A1298C polymorphisms of the methylenetetrahydofolate reductase gene: incidence and effect of combined genotypes on plasma fasting and post methionine load homocysteine in vascular disease. Clin. Chem. 47:661–666, 2001.

    CAS  PubMed  Google Scholar 

  55. Lutz, C. T., Foster, P. A., Noll, W. W., et al. Multicenter evaluation of PCR methods for the detection of Factor V Leiden (R506Q) genotypes. Clini Chem. 44:1356–1357, 1998.

    CAS  Google Scholar 

  56. Rennert, H. and Leonard, D. G. B. Molecular methods in the diagnostic laboratory, in Diagnostic Molecular Pathology, Leonard, D. G. B., ed., W. B. Saunders, Philadelphia, PA, 2003, pp. 25–51.

    Google Scholar 

  57. Gomez, E., van der Poel, S., Jansen, J. H., van der Reijden, B. A., and Lowenberg, B. Rapid simultaeous screening of Factor V Leiden and G20210A prothrombin variant by multiplex polymerase chain reaction on whole blood. Blood 91:2208–2209, 1998.

    CAS  PubMed  Google Scholar 

  58. Hezard, N., Cornillet-Lefebvre, P., Gillot, L., Potron, G., and Nguyen, P. Multiplex ASA PCR for a simultaneous detection of factor V Leiden gene, G-A 20210 prothrombin gene and C-T MTHFR gene mutations. Thromb. Haemost. 79:1054–1055, 1998.

    CAS  PubMed  Google Scholar 

  59. Endler, G., Kyrle, P. A., Eichinger, S., Exner, M., and Mannhatler, C. Multiplex mutagenically separated PCR: simultaneous single tube detection of the factor V R506Q (G1691A), the prothrombin G20210A, and the methylenetetrahydrofolate reductaseA223V (C677T) variants. Clin. Chem. 47:333–335, 2001.

    CAS  PubMed  Google Scholar 

  60. Kirschbaum, N. E. and Foster, P. A. The polymerase chain reaction with sequence specific primers for the detection of the factor V mutation associated with activated protein C resistance. Thromb. Haemost. 74:874–878, 1995.

    CAS  PubMed  Google Scholar 

  61. van Ahsen, N., Shutz, E., Armstrong, V.W. and Oellerich, M. Rapid detection of prothrombotic mutations of prothrombin (G20210A), factor V (G1691A), and methylenetetrahydrofolate reductase (c677T) by real-time fluorescence PCR with the LightCycler. Clin. Chem. 45:694–696, 1999.

    Google Scholar 

  62. Weidenhammer, E. M., Kahl, B. F., Wang, L., et al. Multiplexed, targeted gene expression profiling and genetic analysis on electronic microarrays. Clin. Chem. 48:1873–1882, 2002.

    CAS  PubMed  Google Scholar 

  63. Kwiatkowski, R. W., Lyamichev, V., de Arruda, M., and Neri, B. Clinical, genetic, and pharmacogenetic applications of the Invader assay. Mol. Diagn. 4:354–364, 1999.

    Google Scholar 

  64. McGlennen, R. C. and Key, N. S. Clinical and laboratory management of the prothrombin G20210 mutation. Arch. Pathol. Lab. Med. 26:1319–1325, 2002.

    Google Scholar 

  65. Miesfeld, R. L. Contemporary applied molecular genetics, in Applied Molecular Genetics, Miesfeld, R. L., ed., Wiley–Liss, New York, 1999, pp. 237–265.

    Google Scholar 

  66. Wallace, R. W. DNA on a chip: serving up the genome for diagnostics and research. Mole. Med. Today 3:384–389, 1997.

    Article  CAS  Google Scholar 

  67. Schrijver, I., Lay, M. J., and Zehnder, M.D. Diagnostic single nucleotide polymorphism analysis of Factor V Leiden and pro-thrombin 20210G>A. Am. J. Clin. Pathol. 119:490–496, 2003.

    Article  CAS  PubMed  Google Scholar 

  68. Press, R., Bauer, K., Kujovich, J. L., and Heit, J. A. Clinical utility of Factor V Leiden R506Q testing for the diagnosis and management of thromboembolic disorders. Arch. Pathol. Lab. Med. 126:1304–1318, 2002.

    PubMed  Google Scholar 

  69. Graf, L., Welsh, C. H., Qamar, Z., Marlar, R. A. Activated Protein C Resistance Assay detects thrombotic risk factors other than factor V Leiden. Am. J. Clin. Pathol. 119:522–60.

    Google Scholar 

  70. Legnani, C. C., Palareti, G., Biagi, R., et al. Activated protein C resistance: a comparison between two clotting assays and their relationship to the presence of factor V Leiden mutation. Br. J. Hematol. 93:694–699, 1996.

    Article  CAS  Google Scholar 

  71. Dahlbach, B. New molecular insights intp the genetics of throm-bophilia: resistance to activated protein C caused by Arg506 to Gln mutation in factor V as a pathogenic risk factor for venous thrombosis. Thromb. Haemost. 74:139–148.

    Google Scholar 

  72. Heit, J. A., Silverstein, M. D., Mohr, D. N., et al. The epidemiology of venous thormobemboliism in the community Thromb. Haemost. 86:452–463, 2001.

    CAS  PubMed  Google Scholar 

  73. Ridker, P. M., Hennekens, C. H., Lindpaintner,K., Stampfer, M. J., Eisenberg, P. R., and Miletich, J. P. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N. Engl. J. Med. 332:912–917, 1995.

    Article  CAS  PubMed  Google Scholar 

  74. Burke, W. Genomic medicine: genetic testing. N. Engl. J. Med. 347: 1867–1875, 2002.

    Article  CAS  PubMed  Google Scholar 

  75. Martinelli, I., Mannucci, P. M., de Stefano, V., et al. Different risks of thrombosis in four coagulation defects associated with inherited thrombophilia; a study of 150 families. Blood 92:2353, 1998.

    CAS  PubMed  Google Scholar 

  76. Fijnheer, R., Paijmans, B., Verdonck, L. F., Nieuwenhuis, H. K., Roest, M., and Dekker, A. W. Factor V Leiden in central venous catheter-a ssociated thrombosis. Br. J. Haematol. 118:267–270, 2002.

    Article  CAS  PubMed  Google Scholar 

  77. Friedman, G. S., Meier-Kriesche, H. U., Kaplan, B., et al. Hypercoagulable states in renal transplant candidates: impact of anticoagulation upon incidence of renal allograft thrombosis. Transplantation 27:1073–1078, 2001.

    Article  Google Scholar 

  78. Vaandenbrouke, J. P., Koster, T., Briet, E., Reitsma, P. H., Bertina, R. M., Rosendaal, F. R., Increased risk of venous thrombosis in oral contraceptives users who are carriers of factor V Leiden mutation. Lancet 344:1453–1457, 1994.

    Article  Google Scholar 

  79. Emmerich, J., Rosendaal, F. R, Catanneo, M. et al. Combined effect of factor F Leiden and prothrombin 20210A on the risk of venous thromboembolism: pooled analysis of 8 case control studies including 2310 cases and 3204 controls: study group for Pooled Analysis in Venous Thromboembolism. Thromb. Haemost. 86:809–816, 2001.

    CAS  PubMed  Google Scholar 

  80. Koeleman, B. P. C., Reitsma, P. H, Allart, C. F., and Bertina, R. M. Activated protein C resistance as an additional risk factor for thrombosis in protein C deficient families. Blood 84:1031–1035, 1994.

    CAS  PubMed  Google Scholar 

  81. Simioni, P., Tormene, D., Prandoni, P., et al. Incidence of venous thromboembolism in asymptomatic family members who are carriers of factor V Leiden: a prospective cohort study. Blood 99:1938–1942, 2002.

    Article  CAS  PubMed  Google Scholar 

  82. Rosendaal, F. R., Doggern, C. J., Zivelin, A., et al. Geographic distribution of the 20210 G to A prothrombin variant. Thromb. Haemost. 79:706–708, 1998.

    CAS  PubMed  Google Scholar 

  83. Girolami, A., Simioni, P., Scarano, L., and Carraro, G. Prothrombin and the prothrombin 20210 G to A polymorphism: their relationship with hypercoagulability and thrombosis. Blood Rev. 13:205–210, 1999.

    Article  CAS  PubMed  Google Scholar 

  84. Franco, R. F. Gene polymorphism of the haemostatic system and the risk of arterial thrombotic disease. Br. J. Haematol. 115:491–506, 2001.

    Article  CAS  PubMed  Google Scholar 

  85. Brattstrom, L., Wilcken, D. E., Ohrvik, J., and Brudin, L. Common methylenetetrahydrofolate reductase gene mutation leads to hyper-homocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation 98:2520–2526, 1998.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ballesteros, E. (2006). Molecular Diagnostics in Coagulation. In: Coleman, W.B., Tsongalis, G.J. (eds) Molecular Diagnostics. Humana Press. https://doi.org/10.1385/1-59259-928-1:311

Download citation

  • DOI: https://doi.org/10.1385/1-59259-928-1:311

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-356-5

  • Online ISBN: 978-1-59259-928-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics