Skip to main content

Bioinformatics

Computer-Based Approaches to Genetic Analysis

  • Chapter
Molecular Diagnostics

Abstract

The application of computers, databases, and computational methods to the capture and interpretation of biological data defines the field of bioinformatics. This is an integrative discipline, combining computer science, mathematics, physics, and biology, and is essential for almost every aspect of data management in molecular biology. Numerous organisms have been sequenced, either completely or to near completion. The bacteria Haemophilus influenzae was the first genome to be sequenced completely (1). This was followed by sequencing of the first eukaryotic genome, the budding yeast Saccharomyces cerevisiae (2). Other organisms followed, including the nema-tode Caenorhabditis elegans (3), the fruit fly Drosophila melanogaster (4), and the mouse Mus musculus (5). A working draft of the human genome was released in February 2001 (6), with fine sequencing continuing. Bioinformatics has played a critical role in the sequencing of all these organisms. Genome sequencing of multicellular organisms, as well as many bacterial and viral pathogens, is key to our understanding of the molecular basis of inherited, somatic, and infectious diseases. Sequencing itself, however, is not the end; we also need to know the function of the genes. The mapping of the human genome will impact biomedical research, diagnosis, vaccines, therapeutics, and preventative health care, ultimately allowing for better patient management. The future of bioinformatics is limitless and will continue to impact many fields, including molecular diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult C. J., et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512, 1995.

    Article  Google Scholar 

  2. Goffeau, A. The yeast genome directory. Nature 387:5, 1997.

    Google Scholar 

  3. C. elegans sequencing consortium. Genome sequence of the nema-tode C. elegans: a platform for investigating biology. Science 282:2012–2018, 1998.

    Article  Google Scholar 

  4. Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer, S. E., et al. The genome sequence of Drosophila melanogaster. Science 287:2185–2195, 2000.

    Article  Google Scholar 

  5. Waterston, R. H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J. F., Agarwal, P., Agarwala, R., et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562, 2002.

    Article  Google Scholar 

  6. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., et al.. Initial sequencing and analysis of the human genome. Nature 409:860–921, 2001.

    Article  Google Scholar 

  7. Wheeler, D. L., Church, D. M., Lash, A. E., Leipe, D. D., Madden, T. L., Pontius, J. U., Schuler, G. D., et al. Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Res. 30:13–16, 2002.

    Article  Google Scholar 

  8. Robson, K. J., Chandra, T., MacGillivray, R. T., and Woo, S. L. Polysome immunoprecipitation of phenylalanine hydroxylase mRNA from rat liver and cloning of its cDNA. Proc. Natl. Acad. Sci. USA 79:4701–4705, 1982.

    Article  Google Scholar 

  9. Orkin, S. H. and Nathan, D. G. The molecular genetics of tha-lassemia, in Advances in Human Genetics. Volume 11. Harris, H. and Hirschhorn, K., eds., Plenum, New York, p. 233, 1981.

    Google Scholar 

  10. Green, E. D., Cox, D. R., and Myers, R. M. The human genome project and its impact on the study of human disease, in The Genetic Basis of Human Cancer. Vogelstein, B., Kinzler, K. W., eds., McGraw-Hill, New York, pp. 33–63, 1998.

    Google Scholar 

  11. Monaco, A. P., Bertelson, C. J., Middlesworth, W., et al. Detection of deletions spanning the Duchenne muscular dystrophy locus using a tightly linked DNA segment. Nature 316:842–845, 1985.

    Article  Google Scholar 

  12. Boguski, M. S., Tolstoshev, C. M., and Bassett, D. E., Jr. Gene discovery in dbEST. Science 265:1993–1994, 1994.

    Article  Google Scholar 

  13. Dong, J. T., Lamb, P. W., Rinker-Schaeffer, C. W., et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886, 1995.

    Article  Google Scholar 

  14. Negrini, M., Sabbioni, S., Possati, L., et al. Suppression of tumorigenic-ity of breast cancer cells by microcell-mediated chromosome transfer: studies on chromosomes 6 and 11. Cancer Res. 54:1331– 1336, 1994.

    Google Scholar 

  15. Reid, L. H., West, A., Gioeli, D. G., Phillips K. K., Kelleher, K. F., Araujo, D., Stanbridge, E. J., et al. Localization of a tumor suppressor gene in 11p15.5 using the G401 Wilms’ tumor assay. Hum. Mol. Genet. 5:239–247, 1996.

    Article  Google Scholar 

  16. Reid, L. H., Crider-Miller, S. J., West, A., Lee, M. H., Massague, J., and Weissman, B. E. Genomic organization of the human p57KIP2 gene and its analysis in the G401 Wilms’ tumor assay. Cancer Res. 56:1214–1218, 1996.

    Google Scholar 

  17. Coleman, W. B., McCullough, K. D., Esch, G. L., et al. Suppression of the tumorigenic phenotype of a rat liver epithelial tumor cell line by the p11.2-p12 region of human chromosome 11. Mol. Carcinog. 13:220–232, 1995.

    Article  Google Scholar 

  18. Coleman, W. B., Esch, G. L., Borchert, K. M., et al. Localization of a putative liver tumor suppressor locus to a 950-kb region of human 11p11.2-p12 using rat liver tumor microcell hybrid cell lines. Mol. Carcinog. 19:267–272, 1997.

    Article  Google Scholar 

  19. Mahon, M. C., Driscoll, M. P., Glover, W. J., et al. Suppression of tumorigenicity of rat liver epithelial tumor cell lines by a putative human 11p11.2-p12 liver tumor suppressor locus. Int. J. Oncol. 14:337–346, 1999.

    Google Scholar 

  20. Ricketts, S. L., Carter, J. C., and Coleman, W. B. Identification of three 11p11.2 candidate liver tumor suppressors through analysis of known human genes. Mol. Carcinog. 36:90–99, 2003.

    Article  Google Scholar 

  21. Jahn, J. E., Ricketts, S. L., and Coleman, W. B. Identification of candidate liver tumor suppressor genes from human 11p11.2 by transcription mapping of microcell hybrid cell lines. Int. J. Oncol. 22:1303–1310, 2003.

    Google Scholar 

  22. Bayat, A. Science, medicine, and the future: bioinformatics. Br. Med. J. 324:1018–1022, 2002.

    Article  Google Scholar 

  23. Ginsburg, G. S. and McCarthy, J. J. Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol. 19:491–496, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Jain, K. K. Personalized medicine. Curr. Opin. Mol. Ther. 4:548–558, 2002.

    Google Scholar 

  25. Ross, J. S. and Ginsburg, G. S. The integration of molecular diagnostics with therapeutics. Implications for drug development and pathology practice. Am. J. Clin. Pathol. 119:26–36, 2003.

    Article  PubMed  Google Scholar 

  26. Brookes, A. J. The essence of SNPs. Gene 234:177–186, 1999.

    Article  Google Scholar 

  27. Sachidanandam, R., Weissman, D., Schmidt, S. C., et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933, 2001.

    Article  Google Scholar 

  28. Evans, W. E. Pharmacogenomics: marshalling the human genome to individualise drug therapy. Gut 52(Suppl. 2):10–18, 2003.

    Google Scholar 

  29. Rusnak, J. M., Kisabeth, R. M., Herbert, D. P, and McNeil, D. M. Pharmacogenomics: a clinician’s primer on emerging technologies for improved patient care. Mayo Clin. Proc. 76:299–309, 2001.

    Article  Google Scholar 

  30. Hess, P. and Cooper, D. Impact of pharmacogenomics on the clinical laboratory. Mol. Diagn. 4:289–298, 1999.

    Article  Google Scholar 

  31. Austin, M. A., Harding, S., and McElroy, C. Genebanks: a comparison of eight proposed international genetic databases. Community Genet. 6:37–45, 2003.

    Article  Google Scholar 

  32. Elkin, P. L. Primer on medical genomics part V: bioinformatics. Mayo Clin. Proc. 78:57–64, 2003.

    Article  Google Scholar 

  33. Druker, B. J., Sawyers, C. L., Kantarjian, H., et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344: 1038–1042, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ricketts, S.L. (2006). Bioinformatics. In: Coleman, W.B., Tsongalis, G.J. (eds) Molecular Diagnostics. Humana Press. https://doi.org/10.1385/1-59259-928-1:057

Download citation

  • DOI: https://doi.org/10.1385/1-59259-928-1:057

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-356-5

  • Online ISBN: 978-1-59259-928-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics