Skip to main content

Development of Protein Kinase C and Cyclin-Dependent Kinase Inhibitors As Potentiators of Cytotoxic Drug Action in Leukemia

  • Chapter
Combination Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 540 Accesses

Abstract

During the last decade, the approach to cancer chemotherapy has been revolutionized by two major advances: an accelerated understanding of the cell-death process (apoptosis) (1) and progress in the development of molecularly targeted agents directed against specific oncogenes and enzymes responsible for neoplastic transformation, e.g., STI571 in the case of Bcr/Abl+ malignancies (2). Such efforts have served to focus attention on two general classes of agents: inhibitors of (a) cell-cycle regulation and (b) cytoprotective signal transduction pathways. The rationale for developing cell-cycle inhibitors is based on abundant evidence that neoplastic cells are defective in cell-cycle regulation, i.e., loss of the G1 checkpoint (3). In addition, it is now recognized that a variety of neoplastic cells, particularly those of hematopoietic origin, exhibit increased activity of certain pro-survival signaling pathways, i.e., the Ras/Raf/MEK/MAP kinase cascade (4). Thus, interference with specific cell-cycle progression and/or signaling pathways represents a logical alternative (or adjunct) to the use of cytotoxic agents, which kill neoplastic cells through more general mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 1996;88:386–401.

    PubMed  CAS  Google Scholar 

  2. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL. Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 1996;13:247–254.

    PubMed  CAS  Google Scholar 

  3. McDonald ER 3rd, El-Deiry WS. Checkpoint genes in cancer. Ann Med 2001;33:113–122.

    PubMed  CAS  Google Scholar 

  4. Lee JT Jr, McCubrey JA. The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 2002;16:486–507.

    PubMed  CAS  Google Scholar 

  5. Sachs L, Lotem J. Control of programmed cell death in normal and leukemic cells: new implications for therapy. Blood 1993;82:15–21.

    PubMed  CAS  Google Scholar 

  6. Alnemri ES. Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases. J Cell Biochem 1997; 64:33–42.

    PubMed  CAS  Google Scholar 

  7. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002;2:647–656.

    PubMed  CAS  Google Scholar 

  8. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2002;2:277–288.

    PubMed  CAS  Google Scholar 

  9. Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 200;2:67–71.

    Google Scholar 

  10. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002; 9:423–432.

    PubMed  CAS  Google Scholar 

  11. Chang HY, Yang X. Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 2000;64:821–846.

    PubMed  CAS  Google Scholar 

  12. Peter ME, Krammer PH. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 1998;10:545–551.

    PubMed  CAS  Google Scholar 

  13. Sun XM, MacFarlane M, Zhuang J, Wolf BB, Green DR, Cohen GM. Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem 1999;274:5053–5060.

    PubMed  CAS  Google Scholar 

  14. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 1995;9:484–496.

    PubMed  CAS  Google Scholar 

  15. Mellor H, Parker PJ. The extended protein kinase C superfamily. Bochem J 1998;232:281–292.

    Google Scholar 

  16. Ventura C, Maioli M. Protein kinase C control of gene expression. Crit Rev Eukaryot Gene Expr 2001;11:243–267.

    PubMed  CAS  Google Scholar 

  17. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258:607–614.

    PubMed  CAS  Google Scholar 

  18. Nishizuka Y. Studies and perspectives of protein kinase C. Science 1986;233:305–312.

    PubMed  CAS  Google Scholar 

  19. Jaken S. Protein kinase C isozymes and substrates. Curr Opin Cell Biol 1996;8:168–173.

    PubMed  CAS  Google Scholar 

  20. Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J 1998;332:281–292.

    PubMed  CAS  Google Scholar 

  21. Cai H, Smola U, Wixler V, et al. Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase. Mol Cell Biol 1997;17:732–741.

    PubMed  CAS  Google Scholar 

  22. Morgan MA, Dolp O, Reuter CW. Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood 2001;97:1823–1834.

    PubMed  CAS  Google Scholar 

  23. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995;270:1326–1331.

    PubMed  CAS  Google Scholar 

  24. Lotem J, Cragoe EJ Jr, Sachs L. Rescue from programmed cell death in leukemic and normal myeloid cells. Blood 1991;78:953–960.

    PubMed  CAS  Google Scholar 

  25. Solary E, Bertrand R, Kohn KW, Pommier Y. Differential induction of apoptosis in undifferentiated and differentiated HL-60 cells by DNA topoisomerase I and II inhibitors. Blood 1993;81:1359–1368.

    PubMed  CAS  Google Scholar 

  26. Jarvis WD, Turner AJ, Povirk LF, Traylor RS, Grant S. Induction of apoptotic DNA fragmentation and cell death in HL-60 human promyelocytic leukemia cells by pharmacological inhibitors of protein kinase C. Cancer Res 1994;54:1707–1714.

    PubMed  CAS  Google Scholar 

  27. Bertrand R, Solary E, O’Connor P, Kohn KW, Pommier Y. Induction of a common pathway of apoptosis by staurosporine. Exp Cell Res 1994;21:314–321.

    Google Scholar 

  28. Sherr CJ. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 2000;60:3689–3695.

    PubMed  CAS  Google Scholar 

  29. Nurse P. A long twentieth century of the cell cycle and beyond. Cell 2000;100:71–78.

    PubMed  CAS  Google Scholar 

  30. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 995;81:323–330.

    Google Scholar 

  31. Bartek J, Lukas J. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 2001;490:117–122.

    PubMed  CAS  Google Scholar 

  32. Smits VA, Medema RH. Checking out the G(2)/M transition. Biochim Biophys Acta 2001;1519:1–12.

    PubMed  CAS  Google Scholar 

  33. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13:1501–112.

    PubMed  CAS  Google Scholar 

  34. Wang J, Walsh K. Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 1996;273:359–361.

    PubMed  CAS  Google Scholar 

  35. McDonald ER 3rd, El-Deiry WS. Checkpoint genes in cancer. Ann Med 2001;33:113–122.

    PubMed  CAS  Google Scholar 

  36. Sausville EA, Arbuck SG, Messmann R, et al. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 2001;19:2319–2333.

    PubMed  CAS  Google Scholar 

  37. Thomas JP, Tutsch KD, Cleary JF, et al. Phase I clinical and pharmacokinetic trial of the cyclin-dependent kinase inhibitor flavopiridol. Cancer Chemother Pharmacol 2002;50:465–472.

    PubMed  CAS  Google Scholar 

  38. Nahle Z, Polakoff J, Davuluri RV, et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 2002;4:859–864.

    PubMed  CAS  Google Scholar 

  39. Arguello F, Alexander M, Sterry JA, et al. Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity In vivo against human leukemia and lymphoma xenografts. Blood 1998;91:2482–2490.

    PubMed  CAS  Google Scholar 

  40. Achenbach TV, Muller R, Slater EP. Bcl-2 independence of flavopiridol-induced apoptosis. Mitochondrial depolarization in the absence of cytochrome c release. J Biol Chem 2000;275:32,089–32,097.

    PubMed  CAS  Google Scholar 

  41. Decker RH, Dai Y, Grant S. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in human leukemia cells (U937) through the mitochondrial rather than the receptor-mediated pathway. Cell Death Differ 2001;8:715–724.

    PubMed  CAS  Google Scholar 

  42. Parker BW, Kaur G, Nieves-Neira W, et al. Early induction of apoptosis in hematopoietic cell lines after exposure to flavopiridol. Blood 1998;91:458–465.

    PubMed  CAS  Google Scholar 

  43. Crowther PJ, Cooper IA, Woodcock DM. Biology of cell killing by 1-beta-D-arabinofuranosylcytosine and its relevance to molecular mechanisms of cytotoxicity. Cancer Res 1985;45:4291–4300.

    PubMed  CAS  Google Scholar 

  44. Smith JB, Smith L, Pettit GR. Bryostatins: potent, new mitogens that mimic phorbol ester tumor promoters. Biochem Biophys Res Commun 1985;132:939–945.

    PubMed  CAS  Google Scholar 

  45. Jones RJ, Sharkis SJ, Miller CB, Rowinsky EK, Burke PJ, May WS. Bryostatin 1, a unique biologic response modifier: anti-leukemic activity in vitro. Blood 1990;75:1319–1323.

    PubMed  CAS  Google Scholar 

  46. Lilly M, Tompkins C, Brown C, Pettit G, Kraft A. Differentiation and growth modulation of chronic myelogenous leukemia cells by bryostatin. Cancer Res 1990;50:5520–5525.

    PubMed  CAS  Google Scholar 

  47. Kennedy MJ, Prestigiacomo LJ, Tyler G, May WS, Davidson NE. Differential effects of bryostatin 1 and phorbol ester on human breast cancer cell lines. Cancer Res 1992;52:1278–1283.

    PubMed  CAS  Google Scholar 

  48. Szallasi Z, Du L, Levine R, et al. The bryostatins inhibit growth of B16/F10 melanoma cells in vitro through a protein kinase C-independent mechanism: dissociation of activities using 26-epi-bryostatin 1. Cancer Res 1996;56:2105–2111.

    PubMed  CAS  Google Scholar 

  49. Hornung RL, Pearson JW, Beckwith M, Longo DL. Preclinical evaluation of bryostatin as an anticancer agent against several murine tumor cell lines: in vitro versus in vivo activity. Cancer Res 1992;52:101–107.

    PubMed  CAS  Google Scholar 

  50. Kraft AS, William F, Pettit GR, Lilly MB. Varied differentiation responses of human leukemias to bryostatin 1. Cancer Res 1989;49:1287–1293.

    PubMed  CAS  Google Scholar 

  51. Kiss Z, Deli E, Girard PR, Pettit GR, Kuo JF. Comparative effects of polymyxin B, phorbol ester and bryostatin on protein phosphorylation, protein kinase C translocation, phospholipid metabolism and differentiation of HL60 cells. Biochem Biophys Res Commun 1987;146:208–215.

    PubMed  CAS  Google Scholar 

  52. Isakov N, Galron D, Mustelin T, Pettit GR, Altman A. Inhibition of phorbol ester-induced T cell proliferation by bryostatin is associated with rapid degradation of protein kinase C. J Immunol 1993;150:1195–1204.

    PubMed  CAS  Google Scholar 

  53. Lee HW, Smith L, Pettit GR, Smith JB. Bryostatin 1 and phorbol ester down-modulate protein kinase C-alpha and-epsilon via the ubiquitin/proteasome pathway in human fibroblasts. Mol Pharmacol 1997;51:439–447.

    PubMed  CAS  Google Scholar 

  54. Kraft AS, Smith JB, Berkow RL. Bryostatin, an activator of the calcium phospholipid-dependent protein kinase, blocks phorbol ester-induced differentiation of human promyelocytic leukemia cells HL-60. Proc Natl Acad Sci USA 1986;83:1334–1338.

    PubMed  CAS  Google Scholar 

  55. Vrana JA, Saunders AM, Chellappan SP, Grant S. Divergent effects of bryostatin 1 and phorbol myristate acetate on cell cycle arrest and maturation in human myelomonocytic leukemia cells (U937). Differentiation 1998;63:33–42.

    PubMed  CAS  Google Scholar 

  56. Szallasi Z, Smith CB, Pettit GR, Blumberg PM. Differential regulation of protein kinase C isozymes by bryostatin 1 and phorbol 12-myristate 13-acetate in NIH 3T3 fibroblasts. J Biol Chem 1994;269:2118–2124.

    PubMed  CAS  Google Scholar 

  57. Hocevar BA, Fields AP. Selective translocation of beta II-protein kinase C to the nucleus of human promyelocytic (HL60) leukemia cells. J Biol Chem 1991;266:28–33.

    PubMed  CAS  Google Scholar 

  58. Asiedu C, Biggs J, Lilly M, Kraft AS. Inhibition of leukemic cell growth by the protein kinase C activator bryostatin 1 correlates with the dephosphorylation of cyclin-dependent kinase 2. Cancer Res 1995;55:3716–3720.

    PubMed  CAS  Google Scholar 

  59. May WS, Sharkis SJ, Esa AH, et al. Antineoplastic bryostatins are multipotential stimulators of human hematopoietic progenitor cells. Proc Natl Acad Sci USA 1987;84:8483–8487.

    PubMed  CAS  Google Scholar 

  60. Steube KG, Drexler HG. Differentiation and growth modulation of myeloid leukemia cells by the protein kinase C activating agent bryostatin-1. Leuk Lymphoma 1993;9:141–148.

    PubMed  CAS  Google Scholar 

  61. Matsui WH, Gladstone DE, Vala MS, et al. The role of growth factors in the activity of pharmacological differentiation agents. Cell Growth Differ 2002;13:275–283.

    PubMed  CAS  Google Scholar 

  62. Grant S, Pettit GR, Howe C, McCrady C. Effect of the protein kinase C activating agent bryostatin 1 on the clonogenic response of leukemic blast progenitors to recombinant granulocyte-macrophage colony-stimulating factor. Leukemia 1991;5:392–398.

    PubMed  CAS  Google Scholar 

  63. Mohammad RM, al-Katib A, Pettit GR, Sensenbrenner LL. Differential effects of bryostatin 1 on human non-Hodgkin’s B-lymphoma cell lines. Leuk Res 1993;17:1–8.

    PubMed  CAS  Google Scholar 

  64. al-Katib A, Mohammad RM, Mohamed AN, Pettit GR, Sensenbrenner LL. Conversion of high grade lymphoma tumor cell line to intermediate grade with TPA and bryostatin 1 as determined by polypeptide analysis on 2D gel electrophoresis. Hematol Oncol 1990;8:81–89.

    PubMed  CAS  Google Scholar 

  65. Arbuck SG, Sorensen JM, Christian MC, Ho P, Pluda JM, Cheson BD. New drugs in non-Hodgkin’s lymphoma. Ann Oncol 1997;1:119–128.

    Google Scholar 

  66. Wall NR, Mohammad RM, Al-Katib AM. Mitogen-activated protein kinase is required for bryostatin 1-induced differentiation of the human acute lymphoblastic leukemia cell line Reh. Cell Growth Differ 2001;12:641–647.

    PubMed  CAS  Google Scholar 

  67. Ng SB, Guy GR. Two protein kinase C activators, bryostatin-1 and phorbol-12-myristate-13-acetate, have different effects on haemopoietic cell proliferation and differentiation. Cell Signal 1992;4:405–416.

    PubMed  CAS  Google Scholar 

  68. Wang Z, Su ZZ, Fisher PB, Wang S, VanTuyle G, Grant S. Evidence of a functional role for the cyclin-dependent kinase inhibitor p21(WAF1/CIP1/MDA6) in the reciprocal regulation of PKC activator-induced apoptosis and differentation in human myelomonocytic leukemia cells. Exp Cell Res 1998;244:105–116.

    PubMed  CAS  Google Scholar 

  69. Al-Katib AM, Smith MR, Kamanda WS, et al. Bryostatin 1 down-regulates mdr1 and potentiates vincristine cytotoxicity in diffuse large cell lymphoma xenografts. Clin Cancer Res 1998;4:1305–1314.

    PubMed  CAS  Google Scholar 

  70. Basu A, Lazo JS. Sensitization of human cervical carcinoma cells to cis-diamminedichloroplatinum( II) by bryostatin 1. Cancer Res 1992;52:3119–3124.

    PubMed  CAS  Google Scholar 

  71. Basu A, Akkaraju GR. Regulation of caspase activation and cis-diamminedichloroplatinum(II)-induced cell death by protein kinase C. Biochemistry 1999;38:4245–4251.

    PubMed  CAS  Google Scholar 

  72. Mohammad RM, Wall NR, Dutcher JA, Al-Katib AM. The addition of bryostatin 1 to cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) chemotherapy improves response in a CHOP-resistant human diffuse large cell lymphoma xenograft model. Clin Cancer Res 2000;6:4950–4956.

    PubMed  CAS  Google Scholar 

  73. Grant S. Ara-C: cellular and molecular pharmacology. Adv Cancer Res 1998;72:197–233.

    PubMed  CAS  Google Scholar 

  74. Beardsley Mikita T, Beardsley GP. Functional consequences of the arabinosylcytosine structural lesion in DNA. Biochemistry 1988;27:4698–4705.

    Google Scholar 

  75. Strum JC, Small GW, Pauig SB, Daniel LW. 1-beta-D-Arabinofuranosylcytosine stimulates ceramide and diglyceride formation in HL-60 cells. J Biol Chem 1994;269:15493–15497.

    PubMed  CAS  Google Scholar 

  76. Grant S, Jarvis WD, Swerdlow PS, et al. Potentiation of the activity of 1-beta-D-arabinofuranosylcytosine by the protein kinase C activator bryostatin 1 in HL-60 cells: association with enhanced fragmentation of mature DNA. Cancer Res 1992;52:6270–6278.

    PubMed  CAS  Google Scholar 

  77. Jarvis WD, Povirk LF, Turner AJ, et al. Effects of bryostatin 1 and other pharmacological activators of protein kinase C on 1-[beta-D-arabinofuranosyl]cytosine-induced apoptosis in HL-60 human promyelocytic leukemia cells. Biochem Pharmacol 1994;47:839–852.

    PubMed  CAS  Google Scholar 

  78. Grant S, Traylor R, Bhalla K, McCrady C, Pettit GR. Effect of a combined exposure to cytosine arabinoside, bryostatin 1, and recombinant granulocyte-macrophage colony-stimulating factor on the clonogenic growth in vitro of normal and leukemic human hematopoietic progenitor cells. Leukemia 1992;6:432–439.

    PubMed  CAS  Google Scholar 

  79. Curtis JE, Messner HA, Hasselback R, Elhakim TM, McCulloch EA. Contributions of host-and disease-related attributes to the outcome of patients with acute myelogenous leukemia. J Clin Oncol 1984; 2:253–259.

    PubMed  CAS  Google Scholar 

  80. Grant S, Turner AJ, Freemerman AJ, Wang Z, Kramer L, Jarvis WD. Modulation of protein kinase C activity and calcium-sensitive isoform expression in human myeloid leukemia cells by bryostatin 1: relationship to differentiation and ara-C-induced apoptosis. Exp Cell Res 1996;228:65–75.

    PubMed  CAS  Google Scholar 

  81. Bhatia U, Traganos F, Darzynkiewicz Z. Induction of cell differentiation potentiates apoptosis triggered by prior exposure to DNA-damaging drugs. Cell Growth Differ 1995;6:937–944.

    PubMed  CAS  Google Scholar 

  82. Wang S, Vrana JA, Bartimole TM, et al. Agents that down-regulate or inhibit protein kinase C circumvent resistance to 1-beta-D-arabinofuranosylcytosine-induced apoptosis in human leukemia cells that overexpress Bcl-2. Mol Pharmacol 1997;52:1000–1009.

    PubMed  CAS  Google Scholar 

  83. Ruvolo PP, Deng X, Carr BK, May WS. A functional role for mitochondrial protein kinase Calpha in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem 1998;273:25,436–25,442.

    PubMed  CAS  Google Scholar 

  84. Tang L, Boise LH, Dent P, Grant S. Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells. Cancer Res 2001;61:5106–5115.

    PubMed  Google Scholar 

  85. Wang Z, Wang S, Dai Y, Grant S. Bryostatin 1 increases 1-beta-D-arabinofuranosylcytosine-induced cytochrome c release and apoptosis in human leukemia cells ectopically expressing Bcl-x(L). J Pharmacol Exp Ther 2002;301:568–577.

    PubMed  CAS  Google Scholar 

  86. Wang S, Wang Z, Grant S. Bryostatin 1 and UCN-01 Potentiate 1-beta-D-arabinofuranosylcytosine-induced apoptosis in human myeloid leukemia cells through disparate mechanisms. Mol Pharmacol 2003;63:232–242.

    PubMed  CAS  Google Scholar 

  87. Grant S, Roberts J, Poplin E, et al. Phase Ib trial of bryostatin 1 in patients with refractory malignancies. Clin Cancer Res 1998;4:611–618.

    PubMed  CAS  Google Scholar 

  88. Cragg LH, Andreeff M, Feldman E, et al. Phase I trial and correlative laboratory studies of bryostatin 1 (NSC 339555) and high-dose 1-β-D-arabinofuranosylcytosine in patients with refractory acute leukemia. Clin Cancer Res 2002;8:2123–2133.

    PubMed  CAS  Google Scholar 

  89. Adkins JC, Peters DH, Markham A. Fludarabine. An update of its pharmacology and use in the treatment of haematological malignancies. Drugs 1997;53:1005–1037.

    PubMed  CAS  Google Scholar 

  90. Vrana JA, Wang Z, Rao AS, et al. Induction of apoptosis and differentiation by fludarabine in human leukemia cells (U937): interactions with the macrocyclic lactone bryostatin 1. Leukemia 1999;13:1046–1055.

    PubMed  CAS  Google Scholar 

  91. Mohammad RM, Limvarapuss C, Hamdy N, et al. Treatment of a de novo fludarabine resistant-CLL xenograft model with bryostatin 1 followed by fludarabine. Int J Oncol 1999;14:945–950.

    PubMed  CAS  Google Scholar 

  92. Roberts J, Smith M, Feldman E, Grant S. Phase I trial of bryostatin 1 (NSC 399555) and fludarabine in patients with progressive CLL and indolent non-Hodgkin(s lymphoma. Clinical Lymphoma 2002;3:184–188.

    PubMed  CAS  Google Scholar 

  93. Mohammad RM, Katato K, Almatchy VP, et al. Sequential treatment of human chronic lymphocytic leukemia with bryostatin 1 followed by 2-chlorodeoxyadenosine: preclinical studies. Clin Cancer Res 1998;4:445–453.

    PubMed  CAS  Google Scholar 

  94. Ahmad I, Al-Katib AM, Beck FW, Mohammad RM. Sequential treatment of a resistant chronic lymphocytic leukemia patient with bryostatin 1 followed by 2-chlorodeoxyadenosine: case report. Clin Cancer Res 2000;6:1328–1332.

    PubMed  CAS  Google Scholar 

  95. Ritke MK, Murray NR, Allan WP, Fields AP, Yalowich JC. Hypophosphorylation of topoisomerase II in etoposide (VP-16)-resistant human leukemia K562 cells associated with reduced levels of beta II protein kinase C. Mol Pharmacol 1995;48:798–805.

    PubMed  CAS  Google Scholar 

  96. Mohammad RM, Diwakaran H, Maki A, et al. Bryostatin 1 induces apoptosis and augments inhibitory effects of vincristine in human diffuse large cell lymphoma. Leuk Res 1995;19:667–673.

    PubMed  CAS  Google Scholar 

  97. Dowlati A, Payne J, Robertson K, et al. Phase I trial of combination bryostatin 1 and vincristine in B-cell malignancies: final report. AACR-NCI-EORTC International Conference Abst 800, 2001.

    Google Scholar 

  98. Tanaka Y, Miyake R, Kikkawa U, Nishizuka Y. Rapid assay of binding of tumor-promoting phorbol esters to protein kinase C1. J Biochem (Tokyo) 1986;99:257–261.

    CAS  Google Scholar 

  99. Forsbeck K, Nilsson K, Hansson A, Skoglund G, Ingelman-Sundberg M. Phorbol ester-induced alteration of differentiation and proliferation in human hematopoietic tumor cell lines: relationship to the presence and subcellular distribution of protein kinase C. Cancer Res 1985;45:6194–6199.

    PubMed  CAS  Google Scholar 

  100. Rodriguez-Pena A, Rozengurt E. Disappearance of Ca2+-sensitive, phospholipid-dependent protein kinase activity in phorbol ester-treated 3T3 cells. Biochem Biophys Res Commun 1984;120:1053–1059.

    PubMed  CAS  Google Scholar 

  101. Chen CY, Faller DV. Direction of p21ras-generated signals towards cell growth or apoptosis is determined by protein kinase C and Bcl-2. Oncogene 1995;11:1487–1498.

    PubMed  CAS  Google Scholar 

  102. Vrana JA, Kramer LB, Saunders AM, et al. Inhibition of protein kinase C activator-mediated induction of p21CIP1 and p27KIP1 by deoxycytidine analogs in human leukemia cells: relationship to apoptosis and differentiation. Biochem Pharmacol 1999;58:121–131.

    PubMed  CAS  Google Scholar 

  103. Han ZT, Zhu XX, Yang RY, et al. Effect of intravenous infusions of 12-O-tetradecanoylphorbol-13-acetate (TPA) in patients with myelocytic leukemia: preliminary studies on therapeutic efficacy and toxicity. Proc Natl Acad Sci USA 1998;95:5357–5361.

    PubMed  CAS  Google Scholar 

  104. Han ZT, Tong YK, He LM, et al. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced increase in depressed white blood cell counts in patients treated with cytotoxic cancer chemotherapeutic drugs. Proc Natl Acad Sci USA 1998;95:5362–5365.

    PubMed  CAS  Google Scholar 

  105. Strair RK, Schaar D, Goodell L, et al. Administration of a phorbol ester to patients with hematological malignancies: preliminary results from a phase I clinical trial of 12-O-tetradecanoylphorbol-13-acetate. Clin Cancer Res 2002;8:2512–2518.

    PubMed  CAS  Google Scholar 

  106. Akahashi I, Kobayashi E, Asano K, Yoshida M, Nakano H. UCN-01, a selective inhibitor of protein kinase C from Streptomyces. J Antibiot (Tokyo) 1987;40:1782–1784.

    Google Scholar 

  107. Akinaga S, Gomi K, Morimoto M, Tamaoki T, Okabe M. Antitumor activity of UCN-01, a selective inhibitor of protein kinase C, in murine and human tumor models. Cancer Res 1991;51:4888–4892.

    PubMed  CAS  Google Scholar 

  108. Wang Q, Worland PJ, Clark JL, Carlson BA, Sausville EA. Apoptosis in 7-hydroxystaurosporine-treated T lymphoblasts correlates with activation of cyclin-dependent kinases 1 and 2. Cell Growth Differ 1995;6:927–936.

    PubMed  CAS  Google Scholar 

  109. Seynaeve CM, Stetler-Stevenson M, Sebers S, Kaur G, Sausville EA, Worland P. Cell cycle arrest and growth inhibition by the protein kinase antagonist UCN-01 in human breast carcinoma cells. Cancer Res 1993;53:2081–2086.

    PubMed  CAS  Google Scholar 

  110. Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA, O’Connor P.UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 1996;88:956–965.

    PubMed  CAS  Google Scholar 

  111. Graves PR, Yu L, Schwarz JK, et al. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 2000;275:5600–5605.

    PubMed  CAS  Google Scholar 

  112. Walworth NC. DNA damage: Chk1 and Cdc25, more than meets the eye. Curr Opin Genet Dev 2001;11:78–82.

    PubMed  CAS  Google Scholar 

  113. Busby EC, Leistritz DF, Abraham RT, Karnitz LM, Sarkaria JN. The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChk1. Cancer Res 2000;60:2108–2112.

    PubMed  CAS  Google Scholar 

  114. Sugiyama K, Shimizu M, Akiyama T, et al. UCN-01 selectively enhances mitomycin C cytotoxicity in p53 defective cells which is mediated through S and/or G(2) checkpoint abrogation. Int J Cancer 2000;85:703–709.

    PubMed  CAS  Google Scholar 

  115. Bunch RT, Eastman A. Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01), a new G2-checkpoint inhibitor. Clin Cancer Res 1996;2:791–797.

    PubMed  CAS  Google Scholar 

  116. Shao RG, Cao CX, Shimizu T, O’Connor PM, Kohn KW, Pommier Y. Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystaurosporine (UCN-01) in human cancer cell lines, possibly influenced by p53 function. Cancer Res 1997;57:4029–4035.

    PubMed  CAS  Google Scholar 

  117. Shi Z, Azuma A, Sampath D, Li YX, Huang P, Plunkett W. S-phase arrest by nucleoside analogues and abrogation of survival without cell cycle progression by 7-hydroxystaurosporine. Cancer Res 2001;61:1065–1072.

    PubMed  CAS  Google Scholar 

  118. Harvey S, Decker R, Dai Y, et al. Interactions between 2-fluoroadenine 9-beta-D-arabinofuranoside and the kinase inhibitor UCN-01 in human leukemia and lymphoma cells. Clin Cancer Res 2001;7:320–330.

    PubMed  CAS  Google Scholar 

  119. Sampath D, Shi Z, Plunkett W. Inhibition of cyclin-dependent kinase 2 by the Chk1-Cdc25A pathway during the S-phase checkpoint activated by fludarabine: dysregulation by 7-hydroxystaurosporine. Mol Pharmacol 2002;62:680–688.

    PubMed  CAS  Google Scholar 

  120. Wilson WH, Sorbara L, Figg WD, et al. Modulation of clinical drug resistance in a B cell lymphoma patient by the protein kinase inhibitor 7-hydroxystaurosporine: presentation of a novel therapeutic paradigm. Clin Cancer Res 2000;6:415–421.

    PubMed  CAS  Google Scholar 

  121. Schwartz GK, Jiang J, Kelsen D, Albino AP. Protein kinase C: a novel target for inhibiting gastric cancer cell invasion. J Natl Cancer Inst 1993;85:402–407.

    PubMed  CAS  Google Scholar 

  122. Schwartz GK, Haimovitz-Friedman A, et al. Potentiation of apoptosis by treatment with the protein kinase C-specific inhibitor safingol in mitomycin C-treated gastric cancer cells. J Natl Cancer Inst 1995;87:1394–1399.

    PubMed  CAS  Google Scholar 

  123. Jarvis WD, Fornari FA Jr, Tombes RM, et al. Evidence for involvement of mitogen-activated protein kinase, rather than stress-activated protein kinase, in potentiation of 1-beta-D-arabinofuranosylcytosine-induced apoptosis by interruption of protein kinase C signaling. Mol Pharmacol 1998;54:844–856.

    PubMed  CAS  Google Scholar 

  124. Schwartz GK, Ward D, Saltz L, et al. A pilot clinical/pharmacological study of the protein kinase C-specific inhibitor safingol alone and in combination with doxorubicin. Clin Cancer Res 1997;3:537–543.

    PubMed  CAS  Google Scholar 

  125. Fabbro D, Ruetz S, Bodis S, et al. PKC412—a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des 2000;15:17–28.

    PubMed  CAS  Google Scholar 

  126. Swannie HC, Kaye SB. Protein kinase C inhibitors. Curr Oncol Rep 2002;4:37–46.

    PubMed  Google Scholar 

  127. Tenzer A, Zingg D, Rocha S, et al. The phosphatidylinositide 3′-kinase/Akt survival pathway is a target for the anticancer and radiosensitizing agent PKC412, an inhibitor of protein kinase C. Cancer Res 2001;61:8203–8210.

    PubMed  CAS  Google Scholar 

  128. Weisberg E, Boulton C, Kelly LM, et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002;1:433–443.

    PubMed  CAS  Google Scholar 

  129. Zaugg K, Rocha S, Resch H, et al. Differential p53-dependent mechanism of radio-sensitization in vitro and in vivo by the protein kinase C-specific inhibitor PKC412. Cancer Res 2001;61:732–738.

    PubMed  CAS  Google Scholar 

  130. Ganeshaguru K, Wickremasinghe RG, Jones DT, et al. Actions of the selective protein kinase C inhibitor PKC412 on B-chronic lymphocytic leukemia cells in vitro. Haematologica 2002;87:167–176.

    PubMed  CAS  Google Scholar 

  131. Propper DJ, McDonald AC, Man A, et al. Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J Clin Oncol 2001;19:1485–1492.

    PubMed  CAS  Google Scholar 

  132. Virchis A, Ganeshaguru K, Hart S, et al. A novel treatment approach for low grade lymphoproliferative disorders using PKC412 (CGP41251), an inhibitor of protein kinase C. Hematol J 2002;3:131–136.

    PubMed  CAS  Google Scholar 

  133. Dieter P, Schwende H. Protein kinase C-alpha and-beta play antagonistic roles in the differentiation process of THP-1 cells. Cell Signal 2000;12:297–302.

    PubMed  CAS  Google Scholar 

  134. Mallia CM, Aguirre V, McGary E, et al. Protein kinase calpha is an effector of hexamethylene bisacetamide-induced differentiation of Friend erythroleukemia cells. Exp Cell Res 1999;246:348–354.

    PubMed  CAS  Google Scholar 

  135. Pessino A, Passalacqua M, Sparatore B, Patrone M, Melloni E, Pontremoli S. Antisense oligodeoxynucleotide inhibition of delta protein kinase C expression accelerates induced differentiation of murine erythroleukaemia cells. Biochem J 1995;312:549–554.

    PubMed  CAS  Google Scholar 

  136. Whitman SP, Civoli F, Daniel LW. Protein kinase CbetaII activation by 1-beta-D-arabinofuranosylcytosine is antagonistic to stimulation of apoptosis and Bcl-2alpha downregulation. J Biol Chem 1997;272:23481–23484.

    PubMed  CAS  Google Scholar 

  137. Murray NR, Baumgardner GP, Burns DJ, Fields AP. Protein kinase C isotypes in human erythroleukemia (K562) cell proliferation and differentiation. Evidence that beta II protein kinase C is required for proliferation. J Biol Chem 1993;268:15,847–15,853.

    PubMed  CAS  Google Scholar 

  138. Mani S, Rudin CM, Kunkel K, et al. Phase I clinical and pharmacokinetic study of protein kinase C-alpha antisense oligonucleotide ISIS 3521 administered in combination with 5-fluorouracil and leucovorin in patients with advanced cancer. Clin Cancer Res 2002;8:1042–1048.

    PubMed  CAS  Google Scholar 

  139. Zhai S, Senderowicz AM, Sausville EA, Figg WD. Flavopiridol, a novel cyclin-dependent kinase inhibitor, in clinical development. Ann Pharmacother 2002;36:905–911.

    PubMed  CAS  Google Scholar 

  140. Senderowicz AM, Headlee D, Stinson SF, et al. Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J Clin Oncol 1998;16:2986–2999.

    PubMed  CAS  Google Scholar 

  141. De Azevedo WF Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci USA 1996;93:2735–2740.

    PubMed  Google Scholar 

  142. Gray N, Detivaud L, Doerig C, Meijer L. ATP-site directed inhibitors of cyclin-dependent kinases. Curr Med Chem 1999;6:859–875.

    PubMed  CAS  Google Scholar 

  143. Senderowicz AM. Cyclin-dependent kinase modulators: a novel class of cell cycle regulators for cancer therapy. Cancer Chemother Biol Response Modif 2001;19:165–188.

    PubMed  CAS  Google Scholar 

  144. Rapella A, Negrioli A, Melillo G, Pastorino S, Varesio L, Bosco MC. Flavopiridol inhibits vascular endothelial growth factor production induced by hypoxia or picolinic acid in human neuroblastoma. Int J Cancer 2002;99:658–664.

    PubMed  CAS  Google Scholar 

  145. Chao SH, Price DH. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 2001;276:31,793–31,799.

    PubMed  CAS  Google Scholar 

  146. Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res 1996;56:2973–2978.

    PubMed  CAS  Google Scholar 

  147. Arguello F, Alexander M, Sterry JA, et al. Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity In vivo against human leukemia and lymphoma xenografts. Blood 1998;91:2482–2490.

    PubMed  CAS  Google Scholar 

  148. Rapoport AP, Simons-Evelyn M, Chen T, et al. Flavopiridol induces apoptosis and caspase-3 activation of a newly characterized Burkitt’s lymphoma cell line containing mutant p53 genes. Blood Cells Mol Dis 2001;27:610–24.

    PubMed  CAS  Google Scholar 

  149. Achenbach TV, Muller R, Slater EP. Bcl-2 independence of flavopiridol-induced apoptosis. Mitochondrial depolarization in the absence of cytochrome c release. J Biol Chem 2000;275:32,089–32,097.

    PubMed  CAS  Google Scholar 

  150. Decker RH, Dai Y, Grant S. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in human leukemia cells (U937) through the mitochondrial rather than the receptor-mediated pathway. Cell Death Differ 2001;8:715–724.

    PubMed  CAS  Google Scholar 

  151. Carlson B, Lahusen T, Singh S, et al. Down-regulation of cyclin D1 by transcriptional repression in MCF-7 human breast carcinoma cells induced by flavopiridol. Cancer Res 1999;59:4634–4641.

    PubMed  CAS  Google Scholar 

  152. Kitada S, Zapata JM, Andreeff M, Reed JC. Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood 2000;96:393–397.

    PubMed  CAS  Google Scholar 

  153. Gojo I, Zhang B, Fenton RG. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1. Clin Cancer Res 2002;8:3527–3538.

    PubMed  CAS  Google Scholar 

  154. Rosato RR, Almenara JA, Cartee L, Betts V, Chellappan SP, Grant S. The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells. Mol Cancer Ther 2002;1:253–266.

    PubMed  CAS  Google Scholar 

  155. Almenara J, Rosato R, Grant S. Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia 2002;16:1331–1343.

    PubMed  CAS  Google Scholar 

  156. Asada M, Yamada T, Ichijo H, et al. Apoptosis inhibitory activity of cytoplasmic p21 (Cip1/WAF1) in monocytic differentiation. EMBO J 1999;18:1223–1234.

    PubMed  CAS  Google Scholar 

  157. Motwani M, Delohery TM, Schwartz GK. Sequential dependent enhancement of caspase activation and apoptosis by flavopiridol on paclitaxel-treated human gastric and breast cancer cells. Clin Cancer Res 1999;5:1876–1883.

    PubMed  CAS  Google Scholar 

  158. Matranga CB, Shapiro GI. Selective sensitization of transformed cells to flavopiridol-induced apoptosis following recruitment to S-phase. Cancer Res 2002;62:1707–1717.

    PubMed  CAS  Google Scholar 

  159. Bible KC, Kaufmann SH. Cytotoxic synergy between flavopiridol (NSC 649890, L86-8275) and various antineoplastic agents: the importance of sequence of administration. Cancer Res 1997;57:3375–3380.

    PubMed  CAS  Google Scholar 

  160. Karp JE, Yang WD, Tidwell ML, et al. Timed-sequential therapy (TST) of acute leukemia with flavopiridol (FP): in vitro model for a phase I clinical trial. Blood 2001;98:2482.

    Google Scholar 

  161. Lee AD, Ren S, Lien EJ. Purine analogs as CDK enzyme inhibitory agents: a survey and QSAR analysis (Review). Prog Drug Res 2001;56:155–93.

    PubMed  CAS  Google Scholar 

  162. Filgueira de Azevedo W Jr, Gaspar RT, Canduri F, Camera JC Jr, Freitas da Silveira NJ. Molecular model of cyclin-dependent kinase 5 complexed with roscovitine. Biochem Biophys Res Commun 2002;297:1154–1158.

    PubMed  CAS  Google Scholar 

  163. Somerville L, Cory JG. Apoptosis induced by inhibitors of nucleotide synthesis in deoxyadenosine-resistant leukemia L1210 cells that lack p53 expression. Anticancer Res 2000;20:4171–4178.

    Google Scholar 

  164. Meijer L, Borgne A, Mulner O, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997;243:527–536.

    PubMed  CAS  Google Scholar 

  165. Vermeulen K, Strnad M, Krystof V, et al. Antiproliferative effect of plant cytokinin analogues with an inhibitory activity on cyclin-dependent kinases. Leukemia 2002;16:299–305.

    PubMed  CAS  Google Scholar 

  166. Chang YT, Gray NS, Rosania GR, et al. Synthesis and application of functionally diverse 2,6,9-trisubstituted purine libraries as CDK inhibitors. Chem Biol 1999;6:361–375.

    PubMed  CAS  Google Scholar 

  167. Dai Y, Dent P, Grant S. Induction of apoptosis in human leukemia cells by the CDK1 inhibitor CGP74514A. Cell Cycle 2002;1:143–152.

    PubMed  CAS  Google Scholar 

  168. McClue SJ, Blake D, Clarke R, et al. In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer 2002;102:463–468.

    PubMed  CAS  Google Scholar 

  169. de Vente J, Kiley S, Garris T, et al. Phorbol ester treatment of U937 cells with altered protein kinase C content and distribution induces cell death rather than differentiation. Cell Growth Differ 1995;6:371–382.

    PubMed  Google Scholar 

  170. Wang Z, Su ZZ, Fisher PB, Wang S, VanTuyle G, Grant S. Evidence of a functional role for the cyclin-dependent kinase inhibitor p21(WAF1/CIP1/MDA6) in the reciprocal regulation of PKC activator-induced apoptosis and differentiation in human myelomonocytic leukemia cells. Exp Cell Res 1998;244:105–116.

    PubMed  CAS  Google Scholar 

  171. Freytag SO. Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G0/G1. Mol Cell Biol 1988;8:1614–1624.

    PubMed  CAS  Google Scholar 

  172. Lee HR, Chang TH, Tebalt MJ 3rd, Senderowicz AM, Szabo E. Induction of differentiation accompanies inhibition of Cdk2 in a non-small cell lung cancer cell line. Int J Oncol 1999;15:161–166.

    PubMed  CAS  Google Scholar 

  173. Cartee L, Wang Z, Decker RH, et al. Synergistic induction of apoptosis in human myeloid leukemia cells by phorbol 12-myristate 13-acetate and flavopiridol proceeds via activation of both the intrinsic and tumor necrosis factor-mediated extrinsic cell death pathways. Mol Pharmacol 2002;61:1313–1321.

    PubMed  CAS  Google Scholar 

  174. Cartee L, Smith R, Dai Y, et al. Synergistic induction of apoptosis in human myeloid leukemia cells by phorbol 12-myristate 13-acetate and flavopiridol proceeds via activation of both the intrinsic and tumor necrosis factor-mediated extrinsic cell death pathways. Mol Pharmacol 2002;61:1313–1321.

    PubMed  CAS  Google Scholar 

  175. Cartee L, Maggio SC, Smith R, Sankala HM, Dent P, Grant S. Protein kinase C-dependent activation of the TNF receptor-mediated extrinsic cell death pathway is critical for the synergistic induction of apoptosis by bryostatin 1 and flavopiridol in human myeloid leukemia cells (U937 and HL-60). Mol Cancer Ther 2003;2(1):83–93.

    PubMed  CAS  Google Scholar 

  176. Rahmani M, Grant S. UCN-01 (7-hydroxystauorsporine) blocks PMA-induced maturation and reciprocally promotes apoptosis in human myelomonocytic leukemia cells (U937). Cell Cycle 2002;1:273–281.

    PubMed  CAS  Google Scholar 

  177. Sax JK, Dash BC, Hong R, Dicker DT, El-Deiry WS. The cyclin-dependent kinase inhibitor butyrolactone is a potent inhibitor of p21 (WAF1/CIP1 expression). Cell Cycle 2002;1:90–96.

    PubMed  CAS  Google Scholar 

  178. Dai Y, Yu C, Singh V, et al. Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells. Cancer Res 2001; 61:5106–5115.

    PubMed  CAS  Google Scholar 

  179. Dai Y, Landowski TH, Rosen ST, Dent P, Grant S. Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and-resistant myeloma cells through an IL-6-independent mechanism. Blood 2002;100:3333–3343.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Grant, S. (2005). Development of Protein Kinase C and Cyclin-Dependent Kinase Inhibitors As Potentiators of Cytotoxic Drug Action in Leukemia. In: Schwartz, G.K. (eds) Combination Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-864-1:061

Download citation

  • DOI: https://doi.org/10.1385/1-59259-864-1:061

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-200-1

  • Online ISBN: 978-1-59259-864-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics