Skip to main content

CVD Deposition of Binary AlSb and GaSb Material Films -- a Single-Source Approach

  • Chapter
  • First Online:
Precursor Chemistry of Advanced Materials

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 9))

Abstract

The review summarizes recent studies on the synthesis of M-Sb compounds and their potential application to serve as single-source precursor in MOCVD processes. General reaction pathways for the synthesis of simple Lewis acid-base adducts R3M-ER′3 and heterocycles of the type [R2MSbR′2] x (M = Al,Ga,In) are described. As-formed compounds were studied in detail in MOCVD processes using hot-wall and cold-wall reactors. Advantages as well as problems using single-source precursors are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AFM:

atomic force microscopy

DSC:

differential scanning calorimetry

EDX:

energy-dispersive X-ray diffraction

EELS:

electron energy loss spectroscopy

Et:

ethyl

i-Pr:

iso-propyl

MOCVD:

metal organic chemical vapor deposition

SAED:

selected area electron diffraction

Me:

methyl

SEM:

scanning electron microscopy

t-Bu:

tertiary-butyl

TEM:

transmission electron microscopy

TGA/DTA:

combined thermogravimetry/differential thermal analysis

WDX:

wavelength-dispersive X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  1. AlN is better described as an isolator due to its large direct bandgap of 6.28 eV. Its high melting point (3000 °C) and high thermal conductivity (2.6 Wcm-1 K-1) renders AlN very useful for high power applications

    Google Scholar 

  2. (a) Didchenko R, Alix JD, Toeniskoettler RHJ (1960) Inorg Chem 4:35; (b) Harrison B, Tomkins EH (1962) Inorg Chem 1:951; (c) Manasevit HM (1968) Appl Phys Lett 12:156

    Google Scholar 

  3. See for example: (a) Jones AC, O'Brien P (1997) CVD of Compound Semiconductors: Precursor Synthesis, Development and Applications. VCH, Weinheim; (b) Rees WS (1996) CVD of Nonmetals. VCH, Weinheim; (c) Buhro W (1996) Adv Mater Opt Electron 6:175

    Google Scholar 

  4. For an excellent review see the following and references cited therein: Aardvark A, Mason NJ, Walker PJ (1997) Prog Crystal Growth Charact 35:207

    Google Scholar 

  5. (a) Agert C, Lanyi P, Bett AW (2001) J Crystal Growth 225:426; (b) Biefeld RM (2002) Mat Sci Eng Rep 36:105; (c) Dimroth F, Agert C, Bett AW (2003) J Crystal Growth 248:265; (d) Möller K, Kollonitsch Z, Giesen C, Heuken M, Willig F, Hannappel T (2003) J Crystal Growth 248:244

    Google Scholar 

  6. See the following and references cited therein: (a) Stringfellow GB (1989) Organometallic Vapor-Phase Epitaxy: Theory and Practice. Academic Press, Boston; (b) Razeghi M (2003) Eur Phys J Appl Phys 23:149; (c) Mauk MG, Andreev VM (2003) Semicond Sci Technol 18:191; (d) Bett AW, Sulima OV (2003) Semicond Sci Technol 18:184

    Google Scholar 

  7. (a) Todd MA, Bandari G, Baum TH (1999) Chem Mater 11:547; (b) Harrison BC, Tompkins EH (1962) Inorg Chem 1:951; (b) Sugiura O, Kameda H, Shiina K, Matsumura M (1988) J Electron Mater 17:11

    Google Scholar 

  8. See the following and references cited therein: (a) Park HS, Schulz S, Wessel H, Roesky HW (1999) Chem Vap Deposition 5:179; (b) Kuczkowski A, Schulz S, Assenmacher W (2001) J Mater Chem 11:3241; (c) Berrigan RA, Metson JB, Russell DK (1998) Chem Vap Deposition 4:23; (d) Subekti A, Goldys EM, Paterson MJ, Drozdowics-Tomsia K, Tansley TL (1999) J Mater Res 14:1238; (e) Alphandéry E, Nicholas RJ, Mason NJ, Zhang B, Möck P, Booker GR (1999) Appl Phys Lett 74:2041; (f) Yi SS, Hansen DM, Inoki CK, Harris DL, Kuan TS, Kuech TF (2000) Appl Phys Lett 77:842; (g) Müller-Kirsch L, Pohl UW, Heitz R, Kirmse H, Neumann W, Bimberg D (2000) J Crystal Growth 221:611; (h) Yi SS, Moran PD, Zhang X, Cerrina F, Carter J, Smith HI, Kuech TF (2001) Appl Phys Lett 78:1358; (i) Biefeld RM, Allerman AA, Kurtz SR (1997) J Crystal Growth 174:593; (j) Ramelan AH, Drozdowicz-Tomsia K, Goldys EM, Tansley TL (2001) J Electron Mater 30:965; (k) Biefeld RM, Kurtz SR, Allerman AA (1997) IEE Proc Optoelectron 144:271; (l) Giesen C, Szymakowski A, Rushworth S, Heuken M, Heime K (2000) J Crystal Growth 221:450; (m) Agert C, Lanyi P, Bett AW (2001) J Crystal Growth 225:426; (n) Shin J, Verma A, Stringfellow GB, Gedridge RW (1994) J Cryst Growth 143:15; (o) Shin J, Hsu Y, Stringfellow GB, Gedridge RW (1995) J Electr Mater 24:1563; (p) Chun YS, Stringfellow GB, Gedridge RW (1996) J Electr Mater 25:1539

    Google Scholar 

  9. See the following and references cited therein: Wang CA, Salim S, Jensen KF, Jones AC (1997) J Crystal Growth 170:55

    Google Scholar 

  10. See the following and references cited therein: (a) Cowley AH, Jones RA (1989) Angew Chem Int Ed 28:1208; (b) Maury F (1991) Adv Mater 3:542; (c) Fischer RA (1995) Chemie in unserer Zeit 29:141; (d) Sauls FC, Interrante LV (1993) Coord Chem Rev 128:193; (e) Jones AC (1997) Chem Soc Rev 101; (f) O'Brien P, Haggata S (1995) Adv Mater Opt Electron 5:117

    Google Scholar 

  11. Sauls FC, Interrante LV, Jiang ZP (1990) Inorg Chem 29:2989

    Article  Google Scholar 

  12. (a) Jones AC, Rushworth SA, Houlton DJ, Roberts JS, Roberts V, Whitehouse CR, Critchlow GW (1996) Chem Vap Deposition 2:5; (b) Interrante LV, Lee W, McConnell M, Lewis N, Hall EJ (1989) Electrochem Soc 136:472

    Google Scholar 

  13. Staring EGJ, Meekes GJBM (1989) J Am Chem Soc 111:7648

    Article  Google Scholar 

  14. Hwang JW, Hanson SA, Britton D, Evans JF, Jensen KF, Gladfelter WL (1990) Chem Mater 2:342

    Article  Google Scholar 

  15. (a) MacInnes AN, Power MB, Barron AR (1992) Chem Mater 4:11; (b) MacInnes AN, Power MB, Barron AR (1993) Chem Mater 5:1344

    Google Scholar 

  16. Gysling HJ, Wernberg AA, Blanton TN (1992) Chem Mater 4:900

    Article  Google Scholar 

  17. (a) Janik CF, Wells RL, Young Jr VG, Rheingold AL, Guzei IAJ (1998) J Am Chem Soc 120:532; (b) Stuczynski SM, Opila RL, Marsh P, Brennan JG, Steigerwald ML (1991) Chem Mater 3:379

    Google Scholar 

  18. Cowley AH, Jones RA, Nunn CM, Westmoreland DL (1990) Chem Mater 2:221

    Article  Google Scholar 

  19. (a) Coates, GE (1951) J Chem Soc 2003; (b) Nemirowskii, LM, Kozyrkin BI, Lanstov AF, Gribov BG, Skvortsov IM, Sredinskaya IA (1974) Dokl Akad Nauk SSSR 214:590; (c) Hewitt F, Holliday AK (1952) J Chem Soc 530; (d) Denniston ML, Martin DR (1974) J Inorg Nucl Chem 36:2175; (e) Spiridonov A, Malkova AS (1969) Zh Strukt Khim 10:33; (1969) J Struct Chem USSR 10:303; (f) Coleman AP, Nieuwenhuyzen M, Rutt HN, Seddon KR (1995) J Chem Soc Chem Commun 2369

    Google Scholar 

  20. (a) Lube MS, Wells RL, White PS, (1997) J Chem Soc Dalton Trans 285; (b) Baldwin RA, Foos EE, Wells RL, White PS, Rheingold AL, Yap GPA (1996) Organometallics 15:5035; (c) Wells RL, Foos EE, White PS, Rheingold AL, Liable-Sands LM (1997) Organometallics 16:4771; (d) Foos EE, Wells RL, Rheingold AL (1999) J Cluster Science 10:121; (e) Schulz S, Nieger M (1998) J Organomet Chem 570:275; (f) Schulz S, Nieger M (1999) Organometallics 18:315; (g) Schulz S, Kuczkowski A, Nieger M (2000) J Organomet Chem 604:202; (h) Schulz S, Nieger M (2000) J Chem Soc Dalton Trans 639

    Google Scholar 

  21. (a) Chang CC, Ameerunisha MS (1999) Coord Chem Rev 189:199; (b) Carmalt CJ (2001) Coord Chem Rev 223:217; (c) Wells RL (1992) Coord Chem Rev 112:273

    Google Scholar 

  22. (a) Cowley AH, Jones RA, Kidd KB, Nunn CM, Westmoreland DL (1988) J Organomet Chem 341:C1; (b) Barron AR, Cowley AH, Jones RA, Nunn CM, Westmoreland DL (1988) Polyhedron 7:77; (c) Schulz S, Schoop T, Roesky HW, Häming L, Steiner A, Herbst-Irmer R (1995) Angew Chem Int Ed 34:919

    Google Scholar 

  23. Pitt CG, Purdy AP, Higa KT, Wells RL (1986) Organometallics 5:1266

    Article  Google Scholar 

  24. (a) Foos EE, Jouet RJ, Wells RL, Rheingold AL, Liable-Sands LM (1999) J Organomet Chem 582:45; (b) Foos EE, Jouet RJ, Wells RL, White PS (2000) J Organomet Chem 598:182

    Google Scholar 

  25. Schulz S, Nieger M (1999) Organometallics 18:315

    Article  Google Scholar 

  26. Lide DR (1997) CRC Handbook of Chemistry and Physics, 78th edn. CRC Press, New York, 9–51

    Google Scholar 

  27. (a) Schulz S, Nieger M (1998) Organometallics 17:3398; (b) Schulz S, Kuczkowski A, Nieger M (2000) Organometallics 19:699

    Google Scholar 

  28. This reaction type was introduced by Nöth et al. for the synthesis of phosphinoboranes [R2BPR′2] x . Later on, Fritz et al., Krannich et al. obtained phosphinoalanes by this reaction sequence. (a) Nöth H, Schrägle W (1961) Z Naturforsch B 16:473; (b) Nöth H, Schrägle W (1965) Chem Ber 98:473; (c) Wood GL, Dou D, Narula CK, Duesler EN, Paine RT, Nöth H (1990) Chem Ber 123:1455; (d) Fritz G, Emül R (1975) Z Anorg Allg Chem 416:19; (e) Krannich LK, Watkins CL, Schauer SJ (1995) Organometallics 14:3094

    Google Scholar 

  29. Breunig HJ, Fichtner W (1981) Z Anorg Allg Chem 477:119

    Article  Google Scholar 

  30. (a) Kuczkowski A, Schulz S, Nieger M, Saarenketo P (2001) Organometallics 20:2000; (b) Kuczkowski A, Fahrenholz S, Schulz S, Nieger M (2004) Organometallics 23:3615; (c) Breunig HJ, Stanciu M, Rösler R, Lork E (1998) Z Anorg Allg Chem 624:1965

    Google Scholar 

  31. Schulz S unpublished results

    Google Scholar 

  32. (a) Wagner RS, Ellis WC (1964) Appl Phys Lett 4:98; (b) Lewitt AP (1970) Whisker Technology. Wiley Interscience, New York; (c) Evans CC (1972) Whisker. Mills & Boon limited, London

    Google Scholar 

  33. The VLS mechanism was confirmed at the nanometer scale by direct, in-situ observation of nano-wire growth in a transmission electron microscope at high temperatures. Wu Y, Yang P (2001) J Am Chem Soc 123:3165

    Google Scholar 

  34. GaSb, space group F-43 m, a = 609.5 pm; Natl. Bur. Stand. (US), Circ. 539 6 30 (1956) JCPDF-Card P070215

    Google Scholar 

  35. Schulz S, Kuczkowski A unpublished results

    Google Scholar 

  36. Schulz S, Fahrenholz S submitted for publication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Schulz .

Editor information

Roland A. Fischer

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Schulz, S. CVD Deposition of Binary AlSb and GaSb Material Films -- a Single-Source Approach . In: Fischer, R.A. (eds) Precursor Chemistry of Advanced Materials. Topics in Organometallic Chemistry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136144

Download citation

Publish with us

Policies and ethics