Skip to main content

The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA

  • Chapter
  • First Online:
Fine-Tuning of RNA Functions by Modification and Editing

Part of the book series: Topics in Current Genetics ((TCG,volume 12))

Abstract

Modified nucleosides are present in mRNA of all eukaryotes, albeit at much lower levels than in other RNA moieties such as rRNA, tRNA, and snRNA. Modification by methylation occurs on the terminal guanosine of the cap (N7-methylguanosine), and the first two encoded nucleosides (2’-O-methylnuculeosides) in most higher eukaryotes. Additional modifications of cap nucleosides occur in special cases where the cap is derived by transsplicing in nematodes and kinetoplastids. Modification by methylation also occurs at internal adenosine residues in many species (N6-methyladenosine). Modification by deamination occurs at specific adenosine residues (forming inosine) and cytidine residues (forming uridine) in very specific cases leading to post-transcriptional editing. Numerous studies have shown the importance of the cap N7-methylguanosine in translation, splicing, transport, and mRNA stability. The role of the 2’-O-methylnucleosides is not as well understood, but there is evidence that these modifications play some role in translation efficiency. The role of internal N6-methyladenosine residues is least known, and is the focus of this review. The formation of N6-methyladenosine is catalyzed by a complex enzyme containing a subunit (MT-A70) that co-localizes with nuclear speckles and appears to be widely expressed in all higher eukaryotes. Loss of this enzyme leads to a sporulation defect in yeast and to apoptosis in mammalian cells, although the exact mechanism by which the effects occur remains obscure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Adams BL, Morgan M, Muthukrishnan S, Hecht SM, Shatkin AJ (1978) The effect of ”cap” analogs on reovirus mRNA binding to wheat germ ribosomes. J Biol Chem 253:2589-2595

    Google Scholar 

  • 2. Adams JM, Cory S (1975) Modified nucleosides and bizarre 5’-terminus of HeLa cell messenger RNA. Nature 255:28-33

    Google Scholar 

  • 3. Aloni Y, Dhar R, Khoury G (1979) Methylation of nuclear simian virus 40 RNAs. J Virol 32:52-60

    Google Scholar 

  • 4. Bachellerie JP, Amalric F, Caboche M (1978) Biosynthesis and utilization of extensively undermethylated poly (A)+ RNA in CHO cells during a cycloleucine treatment. Nucleic Acids Res 5:2927-2943

    Google Scholar 

  • 5. Banerjee AK (1980) 5’ - terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiological Reviews 44:175-205

    Google Scholar 

  • 6. Bangs JD, Crain PF, Hashizume T, McCloskey JA, Boothroyd JC (1992) Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J Biol Chem 267:9805-15

    Google Scholar 

  • 7. Bartkoski MJ, Roizman B (1978) Regulation of herpesvirus macromolecular synthesis VII Inhibition of internal methylation of mRNA late in infection. Virology 85:146-156

    Article  Google Scholar 

  • 8. Beelman CA, Stevens A, Caponigro G, Lagrandeur TE, Hatfield L, Fortner DM, Parker R (1996) An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382:642-646

    Google Scholar 

  • 9. Beemon K, Keith J (1977) Localization of N6-methyladenosine in the Rous sarcoma virus genome. J Mol Biol 113:165-179

    Article  Google Scholar 

  • 10. Bokar JA, Rath-Shambaugh ME, Ludwiczak RL, Narayan P, Rottman FM (1994) Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. J Biol Chem 269:17697-17704

    Google Scholar 

  • 11. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM (1997) Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3:1233-1247

    Google Scholar 

  • 12. Bujnicki JM, Rychlewski L (2001) Reassignment of specificities of two cap methyltransferase domains in the reovirus lambda 2 protein. Genome Biol 2:9

    Article  Google Scholar 

  • 13. Bujnicki JM, Feder M, Radlinska M, Rychlewski L (2001) mRNA:guanine-N7 cap methyltransferases: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence-structure-function relationships. BMC Bioinformatics 2:2

    Article  Google Scholar 

  • 14. Bujnicki JM, Feder M, Radlinska M, Blumenthal RM (2002) Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA: m6A methyltransferase. J Mol Evol 55:431-444

    Article  Google Scholar 

  • 15. Camper SA, Albers RJ, Coward JK, Rottman FM (1984) Effect of undermethylation on mRNA cytoplasmic appearance and half-life. Mol Cell Biol 4:538-543

    Google Scholar 

  • 16. Canaani D, Kahana C, Lavi S, Groner Y (1979) Identification and mapping of N6-methyladenosine containing sequences in simian virus 40 RNA. Nucleic Acids Res 6:2879-2899

    Google Scholar 

  • 17. Carberry SE, Friedland DE, Rhoads RE, Goss DJ (1992) Binding of protein synthesis initiation factor 4E to oligoribonucleotides: effects of cap accessibility and secondary structure. Biochemistry 31:1427-1432

    Google Scholar 

  • 18. Carroll SM, Narayan P, Rottman FM (1990) N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA. Mol Cell Biol 10:4456-4465

    Google Scholar 

  • 19. Chen SN, Habib G, Yang CY, Gu ZW, Lee BR, Weng S, Silberman SR, Cai SJ, Deslypere JP, Rosseneu M, Gotto AM, Li WG, Can L (1987) Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 238:363-366

    CAS  PubMed  Google Scholar 

  • 20. Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I (1998) The transcriptional program of sporulation in budding yeast. Science 282:699-705

    Article  CAS  PubMed  Google Scholar 

  • 21. Clancy MJ, Shambaugh, ME, Timpte CS, Bokar JA (2002) Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res 30:4509-4518

    Article  Google Scholar 

  • 22. Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KL (2001) PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J 20:4547-4559

    Article  Google Scholar 

  • 23. Colot HV, Stutz F, Rosbash M (1996) The yeast splicing factor mud13p is a commitment complex component and corresponds to CBP20 the small subunit of the nuclear cap-binding complex. Genes Dev 10:1699-1708

    Google Scholar 

  • 24. Cong P, Shuman S (1992) Methyltransferase and subunit association domains of vaccinia virus mRNA capping enzyme. J Biol Chem 267:16424-16429

    Google Scholar 

  • 25. Csepany T, Lin A, Baldick CJ, Beemon K (1990) Sequence specificity of mRNA N6-adenosine methyltransferse. J Biol Chem 265:20117-20122

    Google Scholar 

  • 26. Desrosiers RC, Friderici KH, Rottman FM (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA 71:3971-3975

    Google Scholar 

  • 27. Desrosiers RC, Friderici KH, Rottman FM (1975) Characterization of Novikoff hepatoma mRNA methylation and heterogeneity in the methylated 5’ terminus. Biochem 14:4367-4374

    Google Scholar 

  • 28. Dimock K, Stoltzfus CM (1977) Sequence specificity of internal methylation in B77 avian sarcoma virus RNA subunits. Biochemistry 16:471-478

    Google Scholar 

  • 29. Dottin RP, Weiner AM, Lodish HF (1976) 5’-Terminal nucleotide sequences of the messenger RNAs of Dictyostelium discoideum. Cell 8:233-244

    Article  Google Scholar 

  • 30. Dubin DT, Stollar V (1975) Methylation of sindbus virus ”26s” messenger RNA. Biochem Biophys Res Comm 66:1373-1379

    Article  Google Scholar 

  • 31. Dubin DT, Taylor RH (1975) The methylation state of poly A-containing-messenger RNA from cultured hamster cells. NAR 2:1653-1668

    Google Scholar 

  • 32. Dubin DT, Stollar V, Hsuchen CC, Timko K, Guild GM (1977) Sindbus virus messenger RNA: The 5’ termini and methylated residues of 26 and 42 S RNA. J Virology 77:457-470

    Article  Google Scholar 

  • 33. Dunckley T, Parker R (1999) The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J18:5411-5422

    Article  Google Scholar 

  • 34. Ensinger MJ, Moss B (1976) Modification of the 5’ terminus of mRNA by an RNA (Guanine-7-)-methyltransferase from HeLa cells. J Biol Chem 251:5283-5291

    Google Scholar 

  • 35. Feder M, Pas J, Wyrwicz LS, Bujnicki JM (2003) Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2’-O-methyltransferases. Gene 302:129-138

    Article  Google Scholar 

  • 36. Fabrega C, Hausmann S, Shen V, Shuman S, Lima CD (2004) Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol Cell 13:77-89

    Article  Google Scholar 

  • 37. Fakan S (1994) Perichromatin fibrils are in situ forms of nascent transcripts. Trends in Cell Biology 4:86-90

    Article  Google Scholar 

  • 38. Finkel D, Groner Y (1983) Methylations of adenosine residues (m6A) in pre-mRNA are important for formation of late simian virus 40 mRNAs. J Virology 131:409-425

    Article  Google Scholar 

  • 39. Fresco LD, Buratowski S (1996) Conditional mutants of the yeast messenger RNA capping enzyme show that the cap enhances, but is not required for, messenger RNA splicing. RNA 2:584-596

    Google Scholar 

  • 40. Furuichi Y, Morgan MA, Shatkin AJ, Jelinek W, Salditt-Georgieff M, Darnell JE (1975) Methylated, blocked 5’ termini in HeLa cell mRNA. Proc Natl Acad Sci USA 72:1904-1908

    Google Scholar 

  • 41. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Bio Cell 11:4241-4257

    Google Scholar 

  • 42. Gillian-Daniel DL, Gray NK, Astrom J, Barkoff A, Wickens M (1998) Modifications of the 5’ cap of mRNAs during Xenopus oocyte maturation: Independence from changes in poly(A) length and impact on translation. Mol Cell Biol 18:6152-6163

    Google Scholar 

  • 43. Grosjean H, Edqvist J, Straby KB, Giege R (1996) Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture. J Mol Biol 255:67-85

    Article  Google Scholar 

  • 44. Grosjean H, Szweykowska-Kulinska Z, Motorin Y, Fasiolo F, Simos G (1997) Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie 79:293-302

    Article  Google Scholar 

  • 45. Hager J, Staker BL, Bugl H, Jakob U (2002) Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem 277:41978-41986

    Article  Google Scholar 

  • 46. Hamm J, Mattaj IW (1990) Monomethylated cap structures facilitate RNA export from the nucleus. Cell 63:109-118

    Article  Google Scholar 

  • 47. Harper JE, Miceli SM, Roberts RJ, Manley JL (1990) Sequence specificty of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res 18:5735-5741

    Google Scholar 

  • 48. Higman MA, Bourgeois N, Niles EG (1992) The vaccinia virus mRNA (guanine -N7-)-methyltransferase requires both subunits of the mRNA capping enzyme for activity. J Biol Chem 267:16430-16437

    Google Scholar 

  • 49. Higman MA, Niles EG (1994) Location of the S-adenosyl-L-methionine binding region of the vaccinia virus mRNA (guanine-7-) methyltransferase. J Biol Chem 269:14982-14987

    Google Scholar 

  • 50. Higman MA, Christen LA, Niles EG (1994) The mRNA (guanine-7-) methyltransferase domain of the vaccinia virus mRNA capping enzyme: expression in Escherichia coli and structural and kinetic comparison to the intact capping enzyme. J Biol Chem 269:14974-14981

    Google Scholar 

  • 51. Hirano K, Young SG, Farese RV Jr, Ng J, Sande E, Warburton C, Powell-Braxton LM, Davidson NO (1996) Targeted disruption of the mouse apobec-1 gene abolishes apolipoprotein B mRNA editing and eliminates apolipoprotein B48. J Biol Chem 271:9887-9890

    Article  Google Scholar 

  • 52. Ho CK, Schwer B, Shuman S (1998) Genetic, physical, and functional interactions between the triphosphatase and guanylyltransferase components of the yeast mRNA capping apparatus. Mol Cell Biol 18:5189-5198

    Google Scholar 

  • 53. Ho CK, Sriskanda V, McCracken S, Bentley D, Schwer B, Shuman S (1998) The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 273:9577-9585

    Article  Google Scholar 

  • 54. Horowitz S, Horowitz A, Nilsen TW, Munns TW, Rottman FM (1984) Mapping of N6-methyladenosine residues in bovine prolactin mRNA. Proc Natl Acad Sci USA 81:5667-5671

    Google Scholar 

  • 55. Izaurralde E, Lewis J, McGuigan M, Jankowska E, Darzynkiewicz, IW Mattaj (1994) A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78:657-668

    Article  Google Scholar 

  • 56. Jaeger JA, Turner DH, Zuker M (1989) Improved predictions of secondary structure for RNA. Proc Natl Acad Sci USA 86:7706-7710

    CAS  PubMed  Google Scholar 

  • 57. Jaeger JA, Turner DH, Zuker M (1989) Predicting optimal and suboptimal secondary structure for RNA. In ”Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences”, RF Doolittle ed Methods in Enzymology, 183, 281-306

    Google Scholar 

  • 58. Jiang HQ, Motorin Y, Jin X, Grosjean H (1997) Pleiotropic effects of intron removal on base modification pattern of yeast tRNAPhe: an in vitro study. Nucleic Acids Res 25:2694-2701

    Article  Google Scholar 

  • 59. Kane SE, Beemon K (1985) Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol Cell Biol 5:2298-2306

    Google Scholar 

  • 60. Kane SE, Beemon K (1987) Inhibition of methylation at two internal N6-methyladenosine sites caused by GAC to GAU mutations. J Biol Chem 262:3422-3427

    Google Scholar 

  • 61. Keith JM, Ensinger MJ, Moss B (1978) HeLa cell RNA (2’-O-methyladenosine-N6-)-methyltransferase specific for the capped 5’-end of messenger RNA. J Biol Chem 253:5033-5041

    Google Scholar 

  • 62. Konarska MM, Padgett RA, Sharp PA (1984) Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 38:731-36

    Article  Google Scholar 

  • 63. Kuge H, Richter JD (1995) Cytoplasmic 3’ poly (A) addition induces 5’ cap ribose methylation: implications for translational control of maternal RNA. EMBO J 14:6301-6310

    Google Scholar 

  • 64. Kuge H, Brownlee GG, Gershon PD, Richter JD (1998) Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. NAR 26:3208-3214

    Article  Google Scholar 

  • 65. Langberg SR, Moss B (1981) Post-transcriptional modifications of mRNA: purification and characterization of cap 1 and cap2 RNA (nucleoside-2’-)-methyltransferases from HeLa cells. J Biol Chem 256:10054-10060

    Google Scholar 

  • 66. Levis R, Penman S (1978) 5’-terminal structures pf poly (A)+ cytoplasmic messenger RNA and of Poly (A)+ and poly (A)- heterogeneous nuclear RNA of cells of the dipteran Drosophila melanogaster. J Mol Biol 120:487-515

    Google Scholar 

  • 67. Lewis JD, Gorlich D, Mattaj IW (1996) A yeast cap binding protein complex (yCBC) acts at an early step in pre-mRNA splicing. Nucleic Acids Res 24:3332-3336

    Article  Google Scholar 

  • 68. Liou RF, Blumenthal T (1990) mRNAs with trimethylguanosine caps result from trans-splicing in Caenorhabditis elegans. Mol Cell Biol 10:1764-1768

    Google Scholar 

  • 69. Liu H, Rodgers ND, Jiao X, Kiledjian M (2002) The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO 21:4699-4708

    Article  Google Scholar 

  • 70. Malone T, Blumenthal RM, Cheng X (1995) Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 253:618-632

    Article  Google Scholar 

  • 71. Mair G, Ullu E, Tschudi C (2000) Cotranscriptional cap 4 formation on the Trypanosoma brucei spliced leader RNA. J Biol Chem 275:28994-28999

    Article  Google Scholar 

  • 72. Maroney PA, Denker JA, Darzynkiewicz E, Laneve R, Nilsen TW (1995) Most mRNAs in the nematode Ascaris lumbricoides are trans-spliced: A role for spliced leader addition in translational efficiency. RNA 1:714-723

    Google Scholar 

  • 73. Martin SA, Paoletti E, Moss B (1975) Purification of mRNA guanylyltransferase and mRNA (guanine-7-)methyltransferase from vaccinia virions. J Biol Chem 250:9322-9329

    Google Scholar 

  • 74. McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M, Bentley DL (1997) The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357-361

    Google Scholar 

  • 75. Melcher T, Maas S, Higuchi M, Keller W, Seeburg PH (1995) Editing of a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR-B pre-mRNA in vitro reveals site-selective adenosine to inosine conversion. J Biol Chem 270:8566-8570

    Article  Google Scholar 

  • 76. Merrick WC, Hershey JWB, in Translational Control, JWB Hershey, MB Mathews, N Sorenbberg, Eds. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York,1996) pp. 31-69; RJ Jackson, ibid., pp. 71-112; VM Pain, Eur J Biochem 236, 747 (1996)

    Google Scholar 

  • 77. Misteli T, Spector DL (1996) Serine/threonine phosphatase 1 modulates the subnuclear distribution of pre-mRNA splicing factors. Mol Biol Cell 7:1559-1572

    Google Scholar 

  • 78. Mizumoto K, Kaziro Y (1987) Messenger RNA capping enzymes from eukaryotic cells. Prog in Nucleic Acid Res 34:1-28

    Google Scholar 

  • 79. Myette JR, Niles EG (1996) Characterization of the vaccinia virus RNA 5’-triphosphatase and nucleoside triphosphate phosphohydrolase activities: demonstration that both activities are carried out at the same active site. J Biol Chem 271:11945-11952

    Article  Google Scholar 

  • 80. Narayan P, Ayers DF, Rottman FM, Maroney PA, Nilsen TW (1987) Unequal distribution of N6-methyladenosine in influenza virus mRNAs. Mol and Cell Biol 7:1572-1575

    Google Scholar 

  • 81. Narayan P, Rottman FM (1988) An in vitro system for accurate methylation of internal adenosine residues in messenger RNA. Science 242:1159-1162

    Google Scholar 

  • 82. Narayan P, Rottman FM (1992) Methylation of mRNA. In: Advances in Enzymology and Related Areas of Molecular Biology, A Meister, ed, John Wiley and Sons, Inc pp 255-285

    Google Scholar 

  • 83. Narayan P, Ludwiczak RL, Goodwin E, Rottman FM (1994) Context effects of N6-adenosine methylation sites in prolactin mRNA. Nucleic Acids Res 22:419-426

    Google Scholar 

  • 84. Nichols JL (1979) ”Cap” structures in maize poly(A)-containing RNA. Biochim Biophys Acta 563:490-495

    Google Scholar 

  • 85. Niedzwiecka A, Marcotrigiano J, Stepinski J, Jankowska-Anyszka M, Wyslouch-Cieszynska A, Dadlez M, Gingras AC, Mak P, Darzynkiewicz E, Sonenberg N, Burley SK, Stolarski R (2002) Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5’ cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J Mol Biol 319:615-635

    Article  Google Scholar 

  • 86. O’Mullane L, Eperon IC (1998) The pre-mRNA 5’ cap determines whether U6 small nuclear RNA succeeds U1 small nuclear ribonucleoprotein particle at 5’ splice sites. Mol Cell Biol 18:7510-7520

    Google Scholar 

  • 87. Perry RP, Kelley DE, Fridirici K, Rottman FM (1975) The methylated constituents of L cell messenger RNA: Evidence for an unusual cluster at the 5’-terminus. Cell 4:387-394

    Article  Google Scholar 

  • 88. Perry RP, Scherrer K (1975) Methylated constituents of globin mRNA. FEBS Lett 57:73-78

    Article  Google Scholar 

  • 89. Perry RP, Kelley DE (1976) Kinetics of formation of 5’ terminal caps in mRNA. Cell 8:433-442

    Article  Google Scholar 

  • 90. Piccirillo C, Khanna R, Kiledjian M (2003) Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 9:1138-1147

    Article  Google Scholar 

  • 91. Polson AG, Bass BL, Casey JL (1995) RNA editing of hepatitus delta virus antigenome by dsRNA-adenosine deaminase. Nature 380:454-456

    Google Scholar 

  • 92. Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J (1987) A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50:831-840

    Article  CAS  PubMed  Google Scholar 

  • 93. Rana AP, Tuck MT (1990) Analysis and in vitro localization of internal methylated adenine residues in dihydrofolate reductase mRNA. Nucleic Acids Res 18:4803-4807

    Google Scholar 

  • 94. Reddy R, Singh R, Shimba S (1992) Methylated cap structures in eukaryotic RNAs: structure, synthesis and functions. Pharm Therapeutics 54:249-267

    Article  Google Scholar 

  • 95. Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6Åresolution. Nature 404:960-967

    Google Scholar 

  • 96. Rhoads RE, Hellmann GM, Remy P, Ebel JP (1983) Translational recognition of messenger ribonucleic acid caps as a function of pH. Biochem 22:6084-6088

    Google Scholar 

  • 97. Robertson KD (2001) DNA methylation, methyltransferases and cancer. Oncogene 20:3139-3155

    Article  CAS  PubMed  Google Scholar 

  • 98. Rose AM, Belford HG, Shen WC, Greer CL, Hopper AK, Martin NC (1995) Location of N2,N2-dimethylguanosine-specific tRNA methyltransferase. Biochimie 77:45-53

    Article  Google Scholar 

  • 99. Rottman FM, Shatkin AJ, Perry RP (1974) Sequences containing methylated nucleotides at the 5’-termini of messenger RNAs: Possible implications for processing. Cell 3:197-199

    Article  Google Scholar 

  • 100. Saha N, Schwer B, Shuman S (1999) Characterization of human, Schizosaccharomyces pombe, and Candida albicans mRNA cap methyltransferases and complete replacement of the yeast capping apparatus by mammalian enzymes. J Biol Chem 274:16553-16562

    Article  Google Scholar 

  • 101. Schibler U, Kelley DE, Perry RP (1977) Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J Mol Biol 115:695-714

    Article  Google Scholar 

  • 102. Schnierle BS, Gershon PD, Moss B (1992) Cap-specific mRNA (nucleoside-O2’-)-methyltransferase and poly(A) polymerase stimulatory activities of vaccinia virus are mediated by a single protein. Proc Natl Acad Sci USA 89:2897-2901

    Google Scholar 

  • 103. Schwer B, Shuman S (1996) Conditional inactivation of messenger RNA capping enzyme affects yeast pre-messenger RNA splicing in vivo. RNA 2:574-583

    Google Scholar 

  • 104. Seidel BL, Somberg EW (1978) Characterization of Neurospora crassa polyadenylated messenger ribonucleic acid structure of the 5’ terminus. Biochem Biophys Res Commun 187:108-112

    Google Scholar 

  • 105. Shah JC, Clancy MJ (1992) IME4, a gene that mediates MAT and nutritional control of meiosis in Saccharomyces cerevisiae. Mol Cell Biol 12:1078-1086

    Google Scholar 

  • 106. Shambaugh ME, Bokar JA Loss of the mRNA N6-methyladenosine methyltransferase, MT-A70, leads to apoptosis in HeLa cells. (submitted)

    Google Scholar 

  • 107. Shatkin AJ (1976) Capping of eukaryotic mRNAs. Cell 9:645-653

    Article  Google Scholar 

  • 108. Shuman S (1995) Capping enzyme in eukaryotic mRNA synthesis. Prog Nucleic Acid Res Mol Biol 50:101-129

    Google Scholar 

  • 109. Somner S, Salditt-Georgieff M, Bachenheimer S, Darnell JE, Furuichi Y, Morgan M, Shatkin AJ (1976) The methylation of adenovirus-specific nuclear and cytoplasmic RNA. NAR 3:749-765

    Google Scholar 

  • 110. Sripati CE, Groner Y, Warner JR (1976) Methylated, blocked 5’ termini of yeast mRNA. J Biol Chem 251:2898-2904

    Google Scholar 

  • 111. Stoltzfus CM, Dane RW (1982) Accumulation of spliced avian retrovirus mRNA is inhibited in S-adenosylmethionine-depleted chicken embryo fibroblasts. J Virology 42:918-931

    Google Scholar 

  • 112. Tsukamoto T, Shibagaki Y, Imajoh-Ohmi S, Murakoshi T, Suzuki M, Nakamura A, Gotoh H, Mizumoto K (1997) Isolation and characterization of the yeast mRNA capping enzyme beta subunit gene encoding RNA 5’-triphosphatase, which is essential for cell viability. Biochem Biophs Res Commun 239:116-122

    Google Scholar 

  • 113. Tucker M, Parker R (2000) Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu Rev Biochem 69:571-595

    Article  Google Scholar 

  • 114. van Doren K, Hirsch D (1990) mRNAs that mature through trans-splicing in Caenorhabditis elegans have a trimethylguanosine cap at their 5’ terminus. Mol Cell Biol 10:1769-1772

    Google Scholar 

  • 115. Visa N, Alzhanova-Ericsson AT, Sun X, Kiseleva E, Bjorkroth B, Wurtz T, Daneholt B (1996) A pre-mRNA-binding protein accompanies the RNA from the gene through the nuclear pores and into polysomes. Cell 84:253-264

    Article  CAS  PubMed  Google Scholar 

  • 116. Von der Haar T, Ball PD, McCarthy JEG (2000) Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5’cap by domains of eIF4G. J Biol Chem 275:30551-30555

    Article  Google Scholar 

  • 117. Von der Haar T, Gross JD, Wagner G, McCarthy JEG (2004) The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol 11:503-511

    Google Scholar 

  • 118. Wei CM, Gershowitz A, Moss B (1975) Methylated nucleotides block 5’ terminus of HeLa cell messenger RNA. Cell 4:379-386

    Article  Google Scholar 

  • 119. Wei CM, Gershowitz A, Moss B (1976) 5’-terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochem 15:397-401

    Google Scholar 

  • 120. Wei CM, Moss B (1977) Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochem 16:1672-1676

    Google Scholar 

  • 121. Wen Y, Yue Z, Shatkin AJ (1998) Mammalian capping enzyme binds RNA and uses protein tyrosine phosphatase mechanism. Proc Natl Acad Sci USA 95:12226-12231

    Article  Google Scholar 

  • 122. Xie K, Sowden MP, Dance GSC, Torelli AT, Smith HC, Wedekind, JE (2004) The structure of a yeast RNA-editing deaminase provides insight into the fold and function of activation-induced deaminase and APOBEC-1. Proc Natl Acad Sci USA 101:8114-8119

    Article  Google Scholar 

  • 123. Yamada-Okabe T, Mio T, Matsui M, Kashima Y, Arisawa M, Yamada-Okabe H (1998) Isolation and characterization of the Candida albicans gene for mRNA 5’-triphosphatase: association of mRNA 5’-triphosphatase and mRNA 5’-guanylyltransferase activities is essential for the function of mRNA 5’-capping enzyme in vivo. FEBS Lett 435:49-54

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Bokar .

Editor information

Henri Grosjean

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Bokar, J.A. The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. In: Grosjean, H. (eds) Fine-Tuning of RNA Functions by Modification and Editing. Topics in Current Genetics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106365

Download citation

Publish with us

Policies and ethics