Skip to main content

Editing and modification in trypanosomatids: the reshaping of non-coding RNAs

  • Chapter
  • First Online:
Fine-Tuning of RNA Functions by Modification and Editing

Part of the book series: Topics in Current Genetics ((TCG,volume 12))

Abstract

Trypanosomatids include a number of protozoan parasites that infect over 27 million people worldwide. Besides their medical importance, these organisms have also provided a wealth of novel biological discoveries including: RNA editing, mRNA trans-splicing, eukaryotic poly-cistronic transcription, and a mechanism for large-scale mitochondrial tRNA import. For many years, the study of RNA post-transcriptional modification in trypanosomatids has lagged behind when compared to bacterial, yeast, and animal systems. However, the discovery of editing in tRNA and 7SL RNAs has produced renewed interest in the processing of non-coding RNAs in these organisms. This chapter will compile what is currently known about RNA editing and modification in trypanosomatids, emphasizing the role these processes play in the structural reshaping of non-coding RNAs. Due to a number of substantive recent reviews, mRNA editing will not be the subject of this chapter. In addition, snoRNA-mediated modification of ribosomal RNAs will be covered in chapter 8 of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Alfonzo JD, Blanc V, Estevez AM, Rubio MA, Simpson L (1999) C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J 18:7056-7062

    Article  Google Scholar 

  • 2. Althoff S, Selinger D, Wise JA (1994) Molecular evolution of SRP cycle components: functional implications. Nucleic Acids Res 22:1933-1947

    Google Scholar 

  • 3. Bangs JD, Crain PF, Hashizume T, McCloskey JA, Boothroyd JC (1992) Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J Biol Chem 267:9805-9815

    Google Scholar 

  • 4. Beja O, Ullu E, Michaeli S (1993) Identification of a tRNA-like molecule that copurifies with the 7SL RNA of Trypanosoma brucei. Mol Biochem Parasitol 57:223-229

    Article  Google Scholar 

  • 5. Ben-Shlomo H, Levitan A, Shay NE, Goncharov I, Michaeli S (1999) RNA editing associated with the generation of two distinct conformations of the trypanosomatid Leptomonas collosoma 7SL RNA. J Biol Chem 274:25642-25650

    Article  Google Scholar 

  • 6. Campbell DA, Thornton DA, Boothroyd JC (1984) Apparent discontinuous transcription of Trypanosoma brucei variant surface antigen genes. Nature 311:350-355

    Google Scholar 

  • 7. Crain PF, Alfonzo JD, Rozenski J, Kapushoc ST, McCloskey JA, Simpson L (2002) Modification of the universally unmodified uridine-33 in a mitochondria-imported edited tRNA and the role of the anticodon arm structure on editing efficiency. RNA 8:752-761

    Article  Google Scholar 

  • 8. Dorner M, Altmann M, Paabo S, Morl M (2001) Evidence for import of a lysyl-tRNA into marsupial mitochondria. Mol Biol Cell 12:2688-2698

    Google Scholar 

  • 9. Freistadt MS, Cross GA, Branch AD, Robertson HD (1987) Direct analysis of the mini-exon donor RNA of Trypanosoma brucei: detection of a novel cap structure also present in messenger RNA. Nucleic Acids Res 15:9861-9879

    Google Scholar 

  • 10. Grosjean H, Edqvist J, Straby KB, Giege R (1996) Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture. J Mol Biol 255:67-85

    Article  Google Scholar 

  • 11. Gunzl A, Bindereif A, Ullu E, Tschudi C (2000) Determinants for cap trimethylation of the U2 small nuclear RNA are not conserved between Trypanosoma brucei and higher eukaryotic organisms. Nucleic Acids Res 28:3702-3709

    Article  Google Scholar 

  • 12. Hausner TP, Giglio LM, Weiner AM (1990) Evidence for base-pairing between mammalian U2 and U6 small nuclear ribonucleoprotein particles. Genes Dev 4:2146-2156

    Google Scholar 

  • 13. Jukes TH, Osawa S (1990) The genetic code in mitochondria and chloroplasts. Experientia 46:1117-1126

    Google Scholar 

  • 14. Jukes TH, Osawa S, Muto A, Lehman N (1987) Evolution of anticodons: variations in the genetic code. Cold Spring Harb Symp Quant Biol 52:769-776

    Google Scholar 

  • 15. Kaneko T, Suzuki T, Kapushoc ST, Rubio MA, Ghazvini J, Watanabe K, Simpson L (2003) Wobble modification differences and subcellular localization of tRNAs in Leishmania tarentolae: implication for tRNA sorting mechanism. EMBO J 22:657-667

    Article  Google Scholar 

  • 16. Laird PW, Kooter JM, Loosbroek N, Borst P (1985) Mature mRNAs of Trypanosoma brucei possess a 5’ cap acquired by discontinuous RNA synthesis. Nucleic Acids Res 13:4253-4266

    Google Scholar 

  • 17. Lenardo MJ, Dorfman DM, Donelson JE (1985) The spliced leader sequence of Trypanosoma brucei has a potential role as a cap donor structure. Mol Cell Biol 5:2487-2490

    Google Scholar 

  • 18. Liang Xu, Xu YX and Michaeli S (2002) The spliced leader-associated RNA is a trypanosome-specific sn(o) RNA that has the potential to guide pseudouridine formation on the SL RNA. RNA 2:237-246.

    Article  Google Scholar 

  • 19. Liu L, Ben-Shlomo H, Xu YX, Stern MZ, Goncharov I, Zhang Y, Michaeli S (2003) The trypanosomatid signal recognition particle consists of two RNA molecules, a 7SL RNA homologue and a novel tRNA-like molecule. J Biol Chem 278:18271-18280

    Article  Google Scholar 

  • 20. Lucke S, Xu GL, Palfi Z, Cross M, Bellofatto V, Bindereif A (1996) Spliced leader RNA of trypanosomes: in vivo mutational analysis reveals extensive and distinct requirements for trans splicing and cap4 formation. EMBO J 15:4380-4391

    Google Scholar 

  • 21. Mair G, Ullu E, Tschudi C (2000) Cotranscriptional cap 4 formation on the Trypanosoma brucei spliced leader RNA. J Biol Chem 275:28994-28999

    Article  Google Scholar 

  • 22. Mandelboim M, Estrano CL, Tschudi C, Ullu E, Michaeli S (2002) On the role of exon and intron sequences in trans-splicing utilization and cap 4 modification of the trypanosomatid Leptomonas collosoma SL RNA. J Biol Chem 277:35210-35218

    Article  Google Scholar 

  • 23. McNally KP, Agabian N (1992) Trypanosoma brucei spliced-leader RNA methylations are required for trans splicing in vivo. Mol Cell Biol 12:4844-4851

    Google Scholar 

  • 24. Muhich ML, Boothroyd JC (1988) Polycistronic transcripts in trypanosomes and their accumulation during heat shock: evidence for a precursor role in mRNA synthesis. Mol Cell Biol 8:3837-3846

    Google Scholar 

  • 25. Osawa S, Jukes TH (1989) Codon reassignment (codon capture) in evolution. J Mol Evol 28:271-278

    Google Scholar 

  • 26. Parsons M, Nelson RG, Watkins KP, Agabian N (1984) Trypanosome mRNAs share a common 5’ spliced leader sequence. Cell 38:309-316

    Article  Google Scholar 

  • 27. Perry KL, Watkins KP, Agabian N (1987) Trypanosome mRNAs have unusual ”cap 4” structures acquired by addition of a spliced leader. Proc Natl Acad Sci U S A 84:8190-8194

    Google Scholar 

  • 28. Quiocho FA, Hu G, Gershon PD (2000) Structural basis of mRNA cap recognition by proteins. Curr Opin Struct Biol 10:78-86

    Article  Google Scholar 

  • 29. Schneider A, Marechal-Drouard L (2000) Mitochondrial tRNA import: are there distinct mechanisms? Trends Cell Biol 10:509-513

    Article  Google Scholar 

  • 30. Schneider A, Martin J, Agabian N (1994a) A nuclear encoded tRNA of Trypanosoma brucei is imported into mitochondria. Mol Cell Biol 14:2317-2322

    Google Scholar 

  • 31. Schneider A, McNally KP, Agabian N (1994b) Nuclear-encoded mitochondrial tRNAs of Trypanosoma brucei have a modified cytidine in the anticodon loop. Nucleic Acids Res 22:3699-3705

    Google Scholar 

  • 32. Simpson AM, Suyama Y, Dewes H, Campbell DA, Simpson L (1989) Kinetoplastid mitochondria contain functional tRNAs, which are encoded in nuclear DNA and also contain small minicircle and maxicircle transcripts of unknown function. Nucleic Acids Res 17:5427-5445

    Google Scholar 

  • 33. Sturm NR, Campbell DA (1999) The role of intron structures in trans-splicing and cap 4 formation for the Leishmania spliced leader RNA. J Biol Chem 274:19361-19367

    Article  Google Scholar 

  • 34. Tan TH, Bochud-Allemann N, Horn EK, Schneider A (2002) Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria. Proc Natl Acad Sci U S A 99:1152-1157

    Article  Google Scholar 

  • 35. Ullu E, Tschudi C (1990) Permeable trypanosome cells as a model system for transcription and trans-splicing. Nucleic Acids Res 18:3319-3326

    Google Scholar 

  • 36. Ullu E, Tschudi C (1991) Trans splicing in trypanosomes requires methylation of the 5’ end of the spliced leader RNA. Proc Natl Acad Sci U S A 88:10074-10078

    Google Scholar 

  • 37. Walder JA, Eder PS, Engman DM, Brentano ST, Walder RY, Knutzon DS, Dorfman DM, Donelson JE (1986) The 35-nucleotide spliced leader sequence is common to all trypanosome messenger RNA’s. Science 233:569-571

    Google Scholar 

  • 38. Weichenrieder O, Wild K, Strub K, Cusack S (2000) Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408:167-173

    Google Scholar 

  • 39. Zeiner GM, Sturm NR, Campbell DA (2003) The Leishmania tarentolae spliced leader contains determinants for association with polysomes. J Biol Chem 278:38269-38275

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Grosjean

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Rubio, M.A.T., Alfonzo, J.D. Editing and modification in trypanosomatids: the reshaping of non-coding RNAs. In: Grosjean, H. (eds) Fine-Tuning of RNA Functions by Modification and Editing. Topics in Current Genetics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106363

Download citation

Publish with us

Policies and ethics