Skip to main content

Nucleotide methylations in rRNA that confer resistance to ribosome-targeting antibiotics

  • Chapter
  • First Online:
Fine-Tuning of RNA Functions by Modification and Editing

Part of the book series: Topics in Current Genetics ((TCG,volume 12))

Abstract

Methylation of rRNA nucleotides is an effective means of conferring resistance to antibiotics that target the bacterial ribosome. This type of resistance seems to have evolved as self-defence mechanisms in bacteria such as Streptomyces species that synthesize ribosome-targeting drugs. The self-defence mechanisms were subsequently recruited by pathogenic bacteria including streptococcal and staphylococcal species, where resistance to macrolides and related drugs is now a prevalent clinical problem. In this article, we review the methylation events in bacterial rRNA that confer resistance, and discuss how the molecular mechanisms of resistance can be explained from the recent crystal structures of antibiotics bound to the ribosome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Aarestrup FM, Jensen LB (2000) Presence of variations in ribosomal protein L16 corresponding to susceptibility of enterococci to oligosaccharides (avilamycin and evernimicin). Antimicrob Agents Chemother 44:3425-3427

    Google Scholar 

  • 2. Adrian PV, Mendrick C, Loebenberg D, McNicholas P, Shaw KJ, Klugman KP, Hare RS, Black TA (2000a) Evernimicin (SCH27899) inhibits a novel ribosome target site: analysis of 23S ribosomal DNA mutants. Antimicrob Agents Chemother 44:3101-3106

    Google Scholar 

  • 3. Adrian PV, Zhao W, Black TA, Shaw KJ, Hare RS, Klugman KP (2000b) Mutations in ribosomal protein L16 conferring reduced susceptibility to evernimicin (SCH27899): implications for mechanism of action. Antimicrob Agents Chemother 44:732-738

    Google Scholar 

  • 4. Andersen TE, Porse BT, Kirpekar F (2004) A novel partial modification at 2501 in Escherichia coli 23S ribosomal RNA. RNA 10:907-913

    Google Scholar 

  • 5. Ballesta JP, Cundliffe E (1991) Site-specific methylation of 16S rRNA caused by pct, a pactamycin resistance determinant from the producing organism, Streptomyces pactum. J Bacteriol 173:7213-7218

    Google Scholar 

  • 6. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905-920

    Google Scholar 

  • 7. Beauclerk AA, Cundliffe E (1987) Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J Mol Biol 193:661-671

    CAS  PubMed  Google Scholar 

  • 8. Bechthold A, Floss HG (1994) Overexpression of the thiostrepton-resistance gene from Streptomyces azureus in Escherichia coli and characterization of recognition sites of the 23S rRNA A1067 2’-methyltransferase in the guanosine triphosphatase center of 23S ribosomal RNA. Eur J Biochem 224:431-437

    Google Scholar 

  • 9. Belova L, Tenson T, Xiong L, McNicholas PM, Mankin AS (2001) A novel site of antibiotic action in the ribosome: interaction of evernimicin with the large ribosomal subunit. Proc Natl Acad Sci USA 98:3726-3731

    Google Scholar 

  • 10. Bosling J, Poulsen SM, Vester B, Long KS (2003) Resistance to the peptidyl transferase inhibitor tiamulin caused by mutation of ribosomal protein L3. Antimicrob Agents Chemother 47:2892-2896

    Google Scholar 

  • 11. Brandi L, Marzi S, Fabbretti A, Fleischer C, Hill WE, Gualerzi CO, Lodmell JS (2004) The translation initiation functions of IF2: Targets for thiostrepton inhibition. J Mol Biol 335:881-894

    Google Scholar 

  • 12. Brimacombe R, Mitchell P, Osswald M, Stade K, Bochkariov D (1993) Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEB Journal 7:161-167

    Google Scholar 

  • 13. Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103:1143-1154

    Google Scholar 

  • 14. Bryskier A (2000) Ketolides - telithromycin, an example of a new class of antibacterial agents. Clin Microbial Infect 6:661-669

    Google Scholar 

  • 15. Buriánková K, Doucet-Populaire F, Dorson O, Gondran A, Ghnassia JC, Weiser J, Pernodet JL (2004) Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother 48:143-150

    Google Scholar 

  • 16. Bussiere DE, Muchmore SW, Dealwis CG, Schluckebier G, Nienaber VL, Edalji RP, Walter KA, Ladror US, Holzman TF, Abad-Zapatero C (1998) Crystal structure of ErmC’, an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37:7103-7112

    Google Scholar 

  • 17. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340-348

    Google Scholar 

  • 18. Champney WS, Chittum HS, Tober CL (2003) A 50S ribosomal subunit precursor particle is a substrate for the ErmC methyltransferase in Staphylococcus aureus cells. Curr Microbiol 46:453-460

    Google Scholar 

  • 19. Chittum HS, Champney WS (1994) Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J Bacteriol 176:6192-6198

    Google Scholar 

  • 20. Conn GL, Draper DE, Lattman EE, Gittis AG (1999) Crystal structure of a conserved ribosomal protein-RNA complex. Science 284:1171-1174

    Google Scholar 

  • 21. Cundliffe E (1990) Recognition sites for antibiotics within rRNA. In: Hill WE, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, Warner JR (eds) The Ribosome: Structure, Function and Evolution. American Society for Microbiology, Washington DC, pp 479-490

    Google Scholar 

  • 22. Das K, Acton T, Chiang Y, Shih L, Arnold E, Montelione GT (2004) Crystal structure of RlmAI: implications for understanding the 23S rRNA G745/G748-methylation at the macrolide antibiotic-binding site. Proc Natl Acad Sci USA 101:4041-4046

    Google Scholar 

  • 23. Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27:344-351

    Article  Google Scholar 

  • 24. Decatur WA, Fournier MJ (2003) RNA-guided nucleotide modification of ribosomal and other RNAs. J Biol Chem 278:695-698

    Article  Google Scholar 

  • 25. Douthwaite S, Crain PF, Liu M, Poehlsgaard J (2004) The tylosin resistance methyltransferase RlmAII (TlrB) modifies the N-1 position of 23S rRNA nucleotide G748. J Mol Biol 337:1073-1077

    Google Scholar 

  • 26. Egebjerg J, Douthwaite S, Garrett RA (1989) Antibiotic interactions at the GTPase-associated centre within Escherichia coli 23S rRNA. EMBO J 8:607-611

    Google Scholar 

  • 27. Farrell DJ, Douthwaite S, Morrissey I, Bakker S, Poehlsgaard J, Jakobsen L, Felmingham D (2003) Macrolide resistance by ribosomal mutation in clinical isolates of Streptococcus pneumoniae from the PROTEKT 1999-2000 study. Antimicrob Agents Chemother 47:1777-1783

    Google Scholar 

  • 28. Foster DR, Rybak MJ (1999) Pharmacologic and bacteriologic properties of SCH-27899 (Ziracin), an investigational antibiotic from the everninomicin family. Pharmacotherapy 19:1111-1117

    Google Scholar 

  • 29. Fourmy D, Recht MI, Blanchard SC, Puglisi JD (1996) Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274:1367-1371

    Google Scholar 

  • 30. Fourmy D, Yoshizawa S, Douthwaite S (2003) Antibiotics as indicators of the functional components of the ribosome. In: Lapointe J, Brakier-Gingras L (eds) Translation Mechanisms. Landes Bioscience, USA, pp 429-442

    Google Scholar 

  • 31. Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC, Dahlberg AE, Frank J (2001) The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 8:181-188

    Google Scholar 

  • 32. Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ (1981) The Molecular Basis of Antibiotic Action. John Wiley and Sons, London

    Google Scholar 

  • 33. Galimand M, Courvalin P, Lambert T (2003) Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antibicrob Agents Chemother 47:2565-2571

    Google Scholar 

  • 34. Giovanetti E, Montanari MP, Mingoia M, Varaldo PE (1999) Phenotypes and genotypes of erythromycin-resistant Streptococcus pyogenes strains in Italy and heterogeneity of inducibly resistant strains. Antimicrob Agents Chemother 43:1935-1940

    Google Scholar 

  • 35. Green R, Noller HF (1997) Ribosomes and translation. Annu Rev Biochem 66:679-716

    Google Scholar 

  • 36. Green R, Noller HF (1999) Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA. Biochemistry 38:1772-1779

    Google Scholar 

  • 37. Gregory ST, Dahlberg AE (1999) Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23S ribosomal RNA. J Mol Biol 289:827-834

    Google Scholar 

  • 38. Gustafsson C, Persson BC (1998) Identification of the rrmA gene encoding the 23S rRNA m1G745 methyltransferase in Escherichia coli and characterization of an m1G745-deficient mutant. J Bacteriol 180:359-365

    Google Scholar 

  • 39. Hajduk PJ, Dinges J, Schkeryantz JM, Janowick D, Kaminski M, Tufano M, Augeri DJ, Petros A, Nienaber V, Zhong P, Hammond R, Coen M, Beutel B, Katz L, Fesik SW (1999) Novel inhibitors of Erm methyltransferases from NMR and parallel synthesis. J Med Chem 42:3852-3859

    Google Scholar 

  • 40. Hanessian S, Sgarbi PW (2000) Design and synthesis of mimics of S-adenosyl-L-homocysteine as potential inhibitors of erythromycin methyltransferases. Bioorg Med Chem Lett 10:433-437

    Google Scholar 

  • 41. Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell 10:117-128

    Google Scholar 

  • 42. Hansen JL, Moore PB, Steitz TA (2003) Structures of five antibiotics bound to the peptidyl transferase center of the large ribosomal subunit. J Mol Biol 330:1061-1075

    Google Scholar 

  • 43. Hansen LH, Kirpekar F, Douthwaite S (2001) Recognition of nucleotide G745 in 23S ribosomal RNA by the RrmA methyltransferase. J Mol Biol 310:1001-1010

    Google Scholar 

  • 44. Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S, Agmon I, Bartels H, Franceschi F, Yonath A (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679-688

    Google Scholar 

  • 45. Harms JM, Schlünzen F, Fucini P, Bartels H, Yonath A (2004) Alteration at the peptidyl transferase centre of the ribosome induced by synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biology 2:4-13

    Google Scholar 

  • 46. Helser TL, Davies JE, Dahlberg JE (1972) Mechanism of kasugamycin resistance in Escherichia coli. Nature (London) New Biol 235:6-9

    Google Scholar 

  • 47. Jenkins G, Zalacain M, Cundliffe E (1989) Inducible ribosomal RNA methylation in Streptomyces lividans, conferring resistance to lincomycin. J Gen Microbiol 135:3281-3288

    Google Scholar 

  • 48. Kagan RM, Clarke S (1994) Widespread occurrence of three motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys 310:417-427

    Google Scholar 

  • 49. Khaitovich P, Tenson T, Kloss P, Mankin AS (1999) Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA. Biochemistry 38:1780-1788

    Google Scholar 

  • 50. Kiss T (2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109:145-148

    Google Scholar 

  • 51. Kofoed CB, Vester B (2002) Interaction of avilamycin with ribosomes and resistance caused by mutations in 23S rRNA. Antimicrob Agents Chemother 46:3339-3342

    Google Scholar 

  • 52. Krzyzosiak W, Denman R, Nurse K, Hellmann W, Boubik M, Gehrke CW, Agris PF, Ofengand J (1987) In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into functional 30S ribosome. Biochemistry 26:2353-2364

    Google Scholar 

  • 53. La Teana A, Gualerzi CO, Dahlberg AE (2001) Initiation factor IF 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA. RNA 7:1173-1179

    Google Scholar 

  • 54. Lafontaine DL, Delcour J, Glasser AL, Desgres J, Vandenhaute J (1994) The DIM1 gene responsible for the conserved m62Am62A dimethylation in the 3’-terminal loop of 18S rRNA is essential in yeast. 241:492-497

    Google Scholar 

  • 55. Leclercq R, Courvalin P (1991) Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 35:1267-1272

    Google Scholar 

  • 56. Liu M, Douthwaite S (2002a) Activity of the ketolide antibiotic telithromycin is refractory to Erm monomethylation of bacterial rRNA. Antimicrob Agents Chemother 46:1629-1633

    Google Scholar 

  • 57. Liu M, Douthwaite S (2002b) Methylation at nucleotide G745 or G748 in 23S rRNA distinguishes Gram-negative from Gram-positive bacteria. Mol Microbiol 44:195-204

    Google Scholar 

  • 58. Liu M, Douthwaite S (2002c) Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. Proc Natl Acad Sci USA 99:14658-14663

    Google Scholar 

  • 59. Liu M, Kirpekar F, van Wezel GP, Douthwaite S (2000) The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA. Mol Microbiol 37:811-820

    Google Scholar 

  • 60. Mankin AS (2001) Ribosomal antibiotics. Mol Biol 35:509-520

    Google Scholar 

  • 61. Mann PA, Xiong L, Mankin AS, Chau AS, Mendrick CA, Najarian DJ, Cramer CA, Loebenberg D, Coates E, Murgolo NJ, Aarestrup FM, Goering RV, Black TA, Hare RS, McNicholas PM (2001) EmtA, a rRNA methyltransferase conferring high-level evernimicin resistance. Mol Microbiol 41:1349-1356

    Google Scholar 

  • 62. Maravic G, Bujnicki JM, Feder M, Pongor S, Flögel M (2003a) Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC’ redefines the substrate-binding site and suggests a model for protein-RNA interactions. Nucleic Acids Res 31:4941-4949

    Google Scholar 

  • 63. Maravic G, Feder M, Pongor S, Flögel M, Bujnicki JM (2003b) Mutational analysis defines the roles of conserved amino acid residues in the predicted catalytic pocket of the rRNA:m6A methyltransferase ErmC’. J Mol Biol 332:99-109

    Google Scholar 

  • 64. Maravic G, Flögel M (2004) RNA methylation and antibiotic resistance: an overview. Periodicum Biologorum 106:135-140

    Google Scholar 

  • 65. McNicholas PM, Najarian DJ, Mann PA, Hesk D, Hare RS, Shaw KJ, Black TA (2000) Evernimicin binds exclusively to the 50S ribosomal subunit and inhibits translation in cell-free systems derived from both gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 44:1121-1126

    Google Scholar 

  • 66. Min YH, Jeong JH, Choi YJ, Yun HJ, Lee K, Shim MJ, Kwak JH, Choi EC (2003) Heterogeneity of macrolide-lincosamide-streptogramin B resistance phenotypes in enterococci. Antimicrob Agents Chemother 47:3415-3420

    Google Scholar 

  • 67. Mosbacher TG, Bechthold A, Schulz GE (2003) Crystal structure of the avilamycin resistance-conferring methyltransferase AviRa from Streptomyces viridochromogenes. J Mol Biol 329:147-157

    Google Scholar 

  • 68. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920-930

    Article  Google Scholar 

  • 69. O’Farrell HC, Scarsdale JN, Rife JP (2004) Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli. J Mol Biol 339:337-353

    Google Scholar 

  • 70. Ofengand J (2002) Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett 514:17-25

    Article  Google Scholar 

  • 71. Ofengand J, Rudd KE (2000) Bacteral, archaeal and organellar rRNA pseudouridines and methylated nucleosides and their enzymes. In: Garrett RA, Douthwaite S, Liljas A, Matheson AT, Moore PB, Noller HF (eds) The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions. American Society for Microbiology, Washington, DC, pp 175-189

    Google Scholar 

  • 72. Poehlsgaard J, Douthwaite S (2003) Macrolide antibiotic interaction and resistance on the bacterial ribosome. Curr Opin Invest Drugs 4:140-148

    Google Scholar 

  • 73. Poldermans B, Roza L, Van Knippenberg PH (1979) Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3’ end of 16S ribosomal RNA of Escherichia coli. III. Purification and properties of the methylating enzyme and methylase-30S interactions. J Biol Chem 254:9094-9100

    Google Scholar 

  • 74. Porse BT, Cundliffe E, Garrett RA (1999) The antibiotic micrococcin acts on protein L11 at the ribosomal GTPase centre. J Mol Biol 287:33-45

    Google Scholar 

  • 75. Poulsen SM, Kofoed C, Vester B (2000) Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. J Mol Biol 304:471-481

    Google Scholar 

  • 76. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppälä H (1999) Nomenclature for macrolide and macrolide-lincomycin-streptogramin B resistance determinants. Antimicrobial Agents and Chemotherapy 43:2823-2830

    Google Scholar 

  • 77. Rodnina MV, Savelsbergh A, Matassova NB, Katunin VI, Semenkov YP, Wintermeyer W (1999) Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc Natl Acad Sci USA 96:9586-9590

    Google Scholar 

  • 78. Rosendahl G, Douthwaite S (1993) Ribosomal proteins L11 and L10.(L12)4 and the antibiotic thiostrepton interact with overlapping regions of the 23S rRNA backbone in the ribosomal GTPase centre. J Mol Biol 234:1013-1020

    Google Scholar 

  • 79. Rosendahl G, Douthwaite S (1994) The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. Nucleic Acids Res 22:357-363

    Google Scholar 

  • 80. Rozenski J, Crain PF, McCloskey JA (1999) The RNA Modification Database: 1999 update. Nucl Acids Res 27:196-197

    Google Scholar 

  • 81. Ryan PC, Lu M, Draper DE (1991) Recognition of the highly conserved GTPase center of 23S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton. J Mol Biol 221:1257-1268

    Google Scholar 

  • 82. Schluckebier G, Zhong P, Stewart KD, Kavanaugh TJ, Abad-Zapatero C (1999) The 2.2 Å structure of the rRNA methyltransferase ErmC’ and its complexes with cofactor and cofactor analogs: Implications for the reaction mechanism. J Mol Biol 289:277-291

    Google Scholar 

  • 83. Schlünzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102:615-623

    Google Scholar 

  • 84. Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814-821

    Google Scholar 

  • 85. Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28:329-335

    Google Scholar 

  • 86. Seidel-Rogol BL, McCulloch V, Shadel GS (2003) Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat Genet 33:23-24

    Google Scholar 

  • 87. Skeggs PA, Thompson J, Cundliffe E (1985) Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. Mol Gen Genet 200:415-421

    Google Scholar 

  • 88. Skinner R, Cundliffe E, Schmidt FJ (1983) Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem 258:12702-12706

    Google Scholar 

  • 89. Spahn CM, Prescott CD (1996) Throwing a spanner in the works: antibiotics and the translation apparatus. J Mol Med 74:423-439 Sparling PF (1970) Kasugamycin resistance: 30S ribosomal mutation with an unusual location on the Escherichia coli chromosome. Science 167:56-58

    Google Scholar 

  • 90. Tait-Kamradt A, Davies T, Cronan M, Jacobs MR, Appelbaum PC, Sutcliffe J (2000) Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob Agents Chemother 44:2118-2125

    Google Scholar 

  • 91. Tenson T, Lovmar M, Ehrenberg M (2003) The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol 330:1005-1014

    Google Scholar 

  • 92. Thompson J, Cundliffe E, Stark M (1979) Binding of thiostrepton to a complex of 23S rRNA with ribosomal protein L11. Eur J Biochem 98:261-265

    Google Scholar 

  • 93. Thompson J, Schmidt F, Cundliffe E (1982) Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton. J Biol Chem 257:7915-7917

    Google Scholar 

  • 94. Thompson J, Skeggs PA, Cundliffe E (1985) Methylation of 16S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin-producer, Micromonospora purpurea. Mol Gen Genet 201:168-173

    Google Scholar 

  • 95. Treede I, Jakobsen L, Kirpekar F, Vester B, Weitnauer G, A. B, Douthwaite S (2003) The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose. Mol Microbiol 49:309-318

    Google Scholar 

  • 96. Van Buul CP, Damm JB, Van Knippenberg PH (1983) Kasugamycin resistant mutants of Bacillus stearothermophilus lacking the enzyme for the methylation of two adjacent adenosines in 16S ribosomal RNA. Mol Gen Genet 189:475-478

    Google Scholar 

  • 97. Van Buul CP, van Knippenberg PH (1985) Nucleotide sequence of the ksgA gene of Escherichia coli: comparison of methyltransferases effecting dimethylation of adenosine in ribosomal RNA. Gene 38:65-72

    Google Scholar 

  • 98. Van Dyke N, Murgola EJ (2003) Site of functional interaction of release factor 1 with the ribosome. J Mol Biol 330:9-13

    Google Scholar 

  • 99. Vázquez D (1979) Inhibitors of Protein Biosynthesis. Springer-Verlag, Berlin

    Google Scholar 

  • 100. Vester B, Douthwaite S (1994) Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase. J Bacteriol 176:6999-7004

    Google Scholar 

  • 101. Vicens Q, Westhof E (2001) Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure (Camb) 9:647-658

    Google Scholar 

  • 102. Vicens Q, Westhof E (2002) Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site. Chem Biol 9:747-755

    Google Scholar 

  • 103. Vicens Q, Westhof E (2003) Crystal structure of geneticin bound to a bacterial 16S ribosomal RNA A site oligonucleotide. J Mol Biol 326:1175-1188

    Google Scholar 

  • 104. Weisblum B (1995a) Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39:577-585

    Google Scholar 

  • 105. Weisblum B (1995b) Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother 39:797-805

    Google Scholar 

  • 106. Weitnauer G, Gaisser S, Trefzer A, Stockert S, Westrich L, Quiros LM, Mendez C, Salas JA, Bechthold A (2001) An ATP-binding cassette transporter and two rRNA methyltransferases are involved in resistance to avilamycin in the producer organism Streptomyces viridochromogenes Tu57. Antimicrob Agents Chemother 45:690-695

    Google Scholar 

  • 107. Wimberly BT, Brodersen DE, Clemons WMJ, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407:327-339

    Google Scholar 

  • 108. Wimberly BT, Guymon R, McCutcheon JP, White SW, Ramakrishnan V (1999) A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 97:491-502

    Google Scholar 

  • 109. Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N, Shibayama K, Yagi T, Kato H, Arakawa Y (2003) Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet 362:1888-1893

    Google Scholar 

  • 110. Yoshizawa S, Fourmy D, Puglisi JD (1998) Structural origins of gentamicin antibiotic action. EMBO J 17:6437-6448

    Article  PubMed  Google Scholar 

  • 111. Yu L, Petros AM, Schnuchel A, Zhong P, Severin JM, Walter K, Holzman TF, Fesik SW (1997) Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamide-streptogramin antibiotic resistance. Nat Struct Biol 4:483-489

    Google Scholar 

  • 112. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883-896

    Article  Google Scholar 

  • 113. Zalacain M, Cundliffe E (1989) Methylation of 23S rRNA caused by tlrA (ermSF), a tylosin resistance determinant from Streptomyces fradiae. J Bacteriol 171:4254-4260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Grosjean

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Douthwaite, S., Fourmy, D., Yoshizawa, S. Nucleotide methylations in rRNA that confer resistance to ribosome-targeting antibiotics. In: Grosjean, H. (eds) Fine-Tuning of RNA Functions by Modification and Editing. Topics in Current Genetics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b105586

Download citation

Publish with us

Policies and ethics