Skip to main content

Conserved ribosomal RNA modification and their putative roles in ribosome biogenesis and translation

  • Chapter
  • First Online:
Fine-Tuning of RNA Functions by Modification and Editing

Part of the book series: Topics in Current Genetics ((TCG,volume 12))

Abstract

rRNA maturation requires extensive covalent modifications of riboses and bases. These modifications concern exclusively the most conserved regions of the molecule, and some modifications are highly conserved throughout the evolution. In bacteria, rRNA modification is achieved exclusively by site-specific enzymes while in archaea and eukaryotes the formation of 2’-O-methylriboses and pseudouridines is guided by numerous snoRNA that direct a catalytic machinery to the target sites on the pre-rRNA. The exact function of these modifications remains elusive since preventing their formation generally leads to no detectable phenotype. However, most of the enzymes that catalyze the formation of these modifications are encoded by essential genes in yeast. Moreover, in some cases preventing the formation of several modifications simultaneously affect ribosome biogenesis and translation. This review presents rRNA modifications that have been conserved throughout the evolution and it gives a special emphasis to the recently characterized 2’-O-ribose RNA methyltransferase Spb1p, which broke the “snoRNA-guided only” methylation dogma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Agarwalla S, Kealey JT, Santi DV, Stroud RM (2002) Characterization of the 23 S ribosomal RNA m5U1939 methyltransferase from Escherichia coli. J Biol Chem 277:8835-8840

    Google Scholar 

  • 2. Agris PF, Koh H, Soll D (1973) The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA. Arch Biochem Biophys 154:277-282

    Google Scholar 

  • 3. Ansmant I, Massenet S, Grosjean H, Motorin Y, Branlant C (2000) Identification of the Saccharomyces cerevisiae RNA:pseudouridine synthase responsible for formation of psi(2819) in 21S mitochondrial ribosomal RNA. Nucl Acids Res 28:1941-1946

    Google Scholar 

  • 4. Badis G, Fromont-Racine M, Jacquier A (2003) A snoRNA that guides the two most conserved pseudouridine modifications within rRNA confers a growth advantage in yeast. RNA 9:771-779

    Google Scholar 

  • 5. Bakin A, Lane BG, Ofengand J (1994) Clustering of pseudouridine residues around the peptidyltransferase center of yeast cytoplasmic and mitochondrial ribosomes. Biochemistry 33:13475-13483

    Google Scholar 

  • 6. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905-920

    Google Scholar 

  • 7. Barta A, Steiner G, Brosius J, Noller HF, Kuechler E (1984) Identification of a site on 23S ribosomal RNA located at the peptidyl transferase center. Proc Natl Acad Sci USA 81:3607-3611

    Google Scholar 

  • 8. Bassler J, Grandi P, Gadal O, Lessmann T, Petfalski E, Tollervey D, Lechner J, Hurt E (2001) Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol Cell 8:517-529

    Google Scholar 

  • 9. Blanchard SC, Puglisi JD (2001) Solution structure of the A loop of 23S ribosomal RNA. Proc Natl Acad Sci USA 98:3720-3725

    Google Scholar 

  • 10. Bonnerot C, Pintard L, Lutfalla G (2003) Functional redundancy of Spb1p and a snR52-dependent mechanism for the 2’-O-ribose methylation of a conserved rRNA position in yeast. Mol Cell 12:1309-1315

    Google Scholar 

  • 11. Brand RC, Klootwijk J, Van Steenbergen TJ, De Kok AJ, Planta RJ (1977) Secondary methylation of yeast ribosomal precursor RNA. Eur J Biochem 75:311-318

    Google Scholar 

  • 12. Bügl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JC, Jakob U (2000) RNA methylation under heat shock control. Mol Cell 6:349-360

    Google Scholar 

  • 13. Bujnicki JM, Droogmans L, Grosjean H, Purushothaman SK, Lapeyre B (2004) Bioinformatics-guided identification and experimental characterization of novel RNA methyltransferases. In: Bujnicki JM (ed) Practical Bioinformatics. Springer-Verlag, Heidelberg, pp 139-168

    Google Scholar 

  • 14. Bujnicki JM, Rychlewski L (2001) Sequence analysis and structure prediction of aminoglycoside-resistance 16S rRNA:m7G methyltransferases. Acta Microbiol Pol 50:7-17

    Google Scholar 

  • 15. Caldas T, Binet E, Bouloc P, Costa A, Desgres J, Richarme G (2000a) The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23S ribosomal RNA methyltransferase. J Biol Chem 275:16414-16419

    Google Scholar 

  • 16. Caldas T, Binet E, Bouloc P, Richarme G (2000b) Translational defects of Escherichia coli mutants deficient in the Um(2552) 23S ribosomal RNA methyltransferase RrmJ/FTSJ. Biochem Biophys Res Commun 271:714-718

    Google Scholar 

  • 17. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Muller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3:2

    Google Scholar 

  • 18. Cavaillé J, Nicoloso M, Bachellerie JP (1996) Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383:732-735

    Google Scholar 

  • 19. Conrad J, Sun D, Englund N, Ofengand J (1998) The rluC gene of Escherichia coli codes for a pseudouridine synthase that is solely responsible for synthesis of pseudouridine at positions 955, 2504, and 2580 in 23 S ribosomal RNA. J Biol Chem 273:18562-18566

    Google Scholar 

  • 20. Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367-379

    Google Scholar 

  • 21. Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27:344-351

    Article  Google Scholar 

  • 22. Decatur WA, Fournier MJ (2003) RNA-guided nucleotide modification of ribosomal and other RNAs. J Biol Chem 278:695-698

    Article  Google Scholar 

  • 23. Del Campo M, Kaya Y, Ofengand J (2001) Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli. RNA 7:1603-1615

    Google Scholar 

  • 24. Dubin DT, Taylor RH (1978) Modification of mitochondrial ribosomal RNA from hamster cells: the presence of GmG and late-methylated UmGmU in the large subunit (17S) RNA. J Mol Biol 121:523-540

    Google Scholar 

  • 25. Eladari ME, Hampe A, Galibert F (1977) Nucleotide sequence neighbouring a late modified guanylic residue within the 28S ribosomal RNA of several eukaryotic cells. Nucl Acids Res 4:1759-1767

    Google Scholar 

  • 26. Fatica A, Tollervey D (2002) Making Ribosomes. Curr Opin Cell Biol 14:313-318

    Google Scholar 

  • 27. Galimand M, Courvalin P, Lambert T (2003) Plasmid-mediated high-level resistance to aminoglycosides in enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother 47:2565-2571

    Google Scholar 

  • 28. Gaspin C, Cavaillé J, Erauso G, Bachellerie JP (2000) Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes [published erratum appears in J Mol Biol 2000 Jul 21;300(4):1017-8]. J Mol Biol 297:895-906

    Google Scholar 

  • 29. Green R, Switzer C, Noller HF (1998) Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA. Science 280:286-289

    Google Scholar 

  • 30. Grosjean H, Benne R (eds) (1998) Modification and editing of RNA. ASM Press, Washington

    Google Scholar 

  • 31. Gu X, Ofengand J, Santi DV (1994) In vitro methylation of Escherichia coli 16S rRNA by tRNA (m5U54)-methyltransferase. Biochemistry 33:2255-2261

    Google Scholar 

  • 32. Gutgsell NS, Campo MD, Raychaudhuri S, Ofengand J (2001) A second function for pseudouridine synthases: a point mutant of RluD unable to form pseudouridines 1911, 1915, and 1917 in Escherichia coli 23S ribosomal RNA restores normal growth to an RluD-minus strain. RNA 7:990-998

    Article  Google Scholar 

  • 33. Hager J, Staker BL, Bugl H, Jakob U (2002) Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem 277:41978-41986

    Article  Google Scholar 

  • 34. Hager J, Staker BL, Jakob U (2004) Substrate binding analysis of the 23S rRNA methyltransferase RrmJ. J Bact: in press

    Google Scholar 

  • 35. Hansen MA, Kirpekar F, Ritterbusch W, Vester B (2002) Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria. RNA 8:202-213

    Google Scholar 

  • 36. Harnpicharnchai P, Jakovljevic J, Horsey E, Miles T, Roman J, Rout M, Meagher D, Imai B, Guo Y, Brame CJ, Shabanowitz J, Hunt DF, Woolford JL Jr (2001) Composition and functional characterization of yeast 66S ribosome assembly intermediates. Mol Cell 8:505-515

    Google Scholar 

  • 37. Hopper AK, Phizicky EM (2003) tRNA transfers to the limelight. Genes Dev 17:162-180

    Article  Google Scholar 

  • 38. Hosokawa K, Fujimura RK, Nomura M (1966) Reconstitution of functionally active ribosomes from inactive subparticles and proteins. Proc Natl Acad Sci USA 55:198-204

    Google Scholar 

  • 39. Kim DF, Green R (1999) Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol Cell 4:859-864

    Google Scholar 

  • 40. King TH, Liu B, McCully RR, Fournier MJ (2003) Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 11:425-435

    Article  Google Scholar 

  • 41. Kiss T (2001) Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 20:3617-3622

    Google Scholar 

  • 42. Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues FM, Kiss T (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077-1088

    Article  Google Scholar 

  • 43. Kowalak JA, Dalluge JJ, McCloskey JA, Stetter KO (1994) The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry 33:7869-7876

    Google Scholar 

  • 44. Kressler D, Rojo M, Linder P, de la Cruz J (1999) Spb1p is a putative methyltransferase required for 60S ribosomal subunit biogenesis in Saccharomyces cerevisiae. Nucl Acids Res 27:4598-4608

    Google Scholar 

  • 45. Lafontaine D, Delcour J, Glasser AL, Desgres J, Vandenhaute J (1994) The DIM1 gene responsible for the conserved m6(2)Am6(2)A dimethylation in the 3’-terminal loop of 18S rRNA is essential in yeast. J Mol Biol 241:492-497

    Article  Google Scholar 

  • 46. Lafontaine DL, Preiss T, Tollervey D (1998) Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis? Mol Cell Biol 18:2360-2370

    Google Scholar 

  • 47. Lane BG (1998) Historical perspectives on RNA nucleoside modifications. In: Grosjean H, Benne R (eds) Modification and editing of RNA. American Society for Microbiology, Washington, pp 1-20

    Google Scholar 

  • 48. Lapeyre B, Mariottini P, Mathieu C, Ferrer P, Amaldi F, Amalric F, Caizergues-Ferrer M (1990) Molecular cloning of Xenopus fibrillarin, a conserved U3 small nuclear ribonucleoprotein recognized by antisera from humans with autoimmune disease. Mol Cell Biol 10:430-434

    Google Scholar 

  • 49. Lapeyre B, Purushothaman SK (2004) Spb1p-directed formation of Gm2922 in the ribosome catalytic center occurs at a late processing stage. Mol Cell: in press

    Google Scholar 

  • 50. Limbach PA, Crain PF, McCloskey JA (1994) Summary: the modified nucleosides of RNA. Nucl Acids Res 22:2183-2196

    Google Scholar 

  • 51. Loo S, Laurenson P, Foss M, Dillin A, Rine J (1995) Roles of ABF1, NPL3, and YCL54 in silencing in Saccharomyces cerevisiae. Genetics 141:889-902

    Google Scholar 

  • 52. Lovgren JM, Wikstrom PM (2001) The rlmB gene is essential for formation of Gm2251 in 23S rRNA but not for ribosome maturation in Escherichia coli. J Bacteriol 183:6957-6960

    Google Scholar 

  • 53. Lowe TM, Eddy SR (1999) A computational screen for methylation guide snoRNAs in yeast. Science 283:1168-1171

    Google Scholar 

  • 54. Maden BE (1990) The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucl Acid Res Mol Biol 39:241-303

    Google Scholar 

  • 55. Maden BE, Corbett ME, Heeney PA, Pugh K, Ajuh PM (1995) Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. Biochimie 77:22-29

    Google Scholar 

  • 56. Mason TL (1998) Functional aspects of the three modified nucleotides in yeast mitochondrial large-subunit rRNA. In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington, pp 273-280

    Google Scholar 

  • 57. Ni J, Tien AL, Fournier MJ (1997) Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565-573

    Article  Google Scholar 

  • 58. Niewmierzycka A, Clarke S (1999) S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 274:814-824

    Article  Google Scholar 

  • 59. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920-930

    Article  Google Scholar 

  • 60. Noller HF, Hoffarth V, Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256:1416-1419

    Google Scholar 

  • 61. Noon KR, Bruenger E, McCloskey JA (1998) Posttranscriptional modifications in 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfataricus. J Bacteriol 180:2883-2888

    Google Scholar 

  • 62. Ofengand J (2002) Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett 514:17-25

    Article  Google Scholar 

  • 63. Ofengand J, Malhotra A, Remme J, Gutgsell NS, Del Campo M, Jean-Charles S, Peil L, Kaya Y (2001) Pseudouridines and pseudouridine synthases of the ribosome. Cold Spring Harb Symp Quant Biol 66:147-159

    Article  Google Scholar 

  • 64. Omer AD, Lowe TM, Russell AG, Ebhardt H, Eddy SR, Dennis PP (2000) Homologs of small nucleolar RNAs in archaea. Science 288:517-522

    Google Scholar 

  • 65. Parker R, Simmons T, Shuster EO, Siliciano PG, Guthrie C (1988) Genetic analysis of small nuclear RNAs in Saccharomyces cerevisiae: viable sextuple mutant. Mol Cell Biol 8:3150-3159

    Google Scholar 

  • 66. Persson BC, Gustafsson C, Berg DE, Björk GR (1992) The gene for a tRNA modifying enzyme, m5U54-methyltransferase, is essential for viability in Escherichia coli. Proc Natl Acad Sci USA 89:3995-3998

    Google Scholar 

  • 67. Pintard L, Bujnicki JM, Lapeyre B, Bonnerot C (2002a) MRM2 encodes a novel yeast mitochondrial 21S rRNA methyltransferase. EMBO J 21:1139-1147

    Google Scholar 

  • 68. Pintard L, Kressler D, Lapeyre B (2000) Spb1p is a yeast nucleolar protein associated with Nop1p and Nop58p that is able to bind S-adenosyl-L-methionine in vitro. Mol Cell Biol 20:1370-1381

    Article  Google Scholar 

  • 69. Pintard L, Lecointe F, Bujnicki JM, Bonnerot C, Grosjean H, Lapeyre B (2002b) Trm7p catalyses the formation of two 2’-O-methylriboses in yeast tRNA anticodon loop. EMBO J 21:1811-1820

    Article  Google Scholar 

  • 70. Purushothaman SK, Bujnicki JM, Grosjean H, Lapeyre B (2004) Trm11 encodes the tRNA MTase that catalyzes the formation of m2G10 in yeast: in preparation

    Google Scholar 

  • 71. Raychaudhuri S, Conrad J, Hall BG, Ofengand J (1998) A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. RNA 4:1407-1417

    Google Scholar 

  • 72. Retel J, van den Bos RC, Planta RJ (1969) Characteristics of the methylation in vivo of ribosomal RNA in yeast. Biochim Biophys Acta 195:370-380

    Google Scholar 

  • 73. Rozenski J, Crain PF, McCloskey JA (1999) The RNA modification database: 1999 update. Nucleic Acids Res 27:196-197

    Article  Google Scholar 

  • 74. Sachs AB, Davis RW (1989) The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58:857-867

    Google Scholar 

  • 75. Samarsky DA, Balakin AG, Fournier MJ (1995) Characterization of three new snRNAs from Saccharomyces cerevisiae: snR34, snR35 and snR36. Nucl Acids Res 23:2548-2554

    Google Scholar 

  • 76. Schimmang T, Tollervey D, Kern H, Frank R, Hurt EC (1989) A yeast nucleolar protein related to mammalian fibrillarin is associated with small nucleolar RNA and is essential for viability. EMBO J 8:4015-4024

    Google Scholar 

  • 77. Sirum-Connolly K, Mason TL (1993) Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science 262:1886-1889

    Google Scholar 

  • 78. Starr JL, Fefferman R (1964) The occurrence of methylated bases in ribosomal ribonucleic acid of Escherichia coli K12 W-6. J Biol Chem 239:3457-3461

    Google Scholar 

  • 79. Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC (1993) Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443-457

    Google Scholar 

  • 80. van Knippenberg PH (1986) Structural and functional aspects of the N6, N6 dimethyladenosines in 16S ribosomal RNA. In: Hadesty BaK, G. (ed) Structure, function, and genetics of ribosomes. Springer-Verlag, New York, pp 412-424

    Google Scholar 

  • 81. Vester B, Hansen LH, Douthwaite S (1995) The conformation of 23S rRNA nucleotide A2058 determines its recognition by the ErmE methyltransferase. RNA 1:501-509

    Google Scholar 

  • 82. Wang H, Boisvert D, Kim KK, Kim R, Kim SH (2000) Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 Å resolution. EMBO J 19:317-323

    Google Scholar 

  • 83. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 A resolution. Science 292:883-896

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Lapeyre .

Editor information

Henri Grosjean

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Lapeyre, B. Conserved ribosomal RNA modification and their putative roles in ribosome biogenesis and translation. In: Grosjean, H. (eds) Fine-Tuning of RNA Functions by Modification and Editing. Topics in Current Genetics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b105433

Download citation

Publish with us

Policies and ethics