Skip to main content

Spectroscopy on field-effect induced quantum wires and quantum dots

  • Chapter
  • First Online:
Advances in Solid State Physics 35

Part of the book series: Advances in Solid State Physics ((ASSP,volume 35))

Abstract

We discuss recent developments in the techniques to investigate very well defined one-dimensional quantum wires and extremely small zero-dimensional quantum dots in which the electron density can be controlled with field electrodes. The electron systems are induced in especially designed metal insulator semiconductor (MIS-type) heterojunctions that contain no doping in the front barrier but instead a highly doped back electrode buried beneath the heterojunction interface. One-dimensional electron wires of very high quality are generated in GaAs/AlAs MIS-type heterostructures with so-called interdigitated electrodes, which allow us to control almost independently the confinement potential and electron density. Very small zero-dimensional electron dots with a diameter of typically 20 nm are prepared on InGaAs/GaAs heterostructures in the Stranski-Krastanov growth modus. Capacitance as well as far-infrared measurements are presented that directly reflect the special properties of one- and zero-dimensional electron systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. see e. g. Mesoscopic Phenomena in Solids, eds. B.L. Altshuler, P.A. Lee and R.A. Webb (North-Holland, Amsterdam, 1991); C.W.J. Beenakker and H. van Houten, in Solid State Physics Vol. 44, eds.: H. Ehrenreich and D. Turnbull, (Academic Press, New York 1991) p. 1; Nanostructured Systems, in Semiconductors and Semimetals, ed. R.K. Williardson, A.C. Beer, E.R. Weber, Vol. 35, ed. M. Reed, (Academic Press, San Diego 1992).

    Google Scholar 

  2. T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  3. R.C. Ashoori, H.L. Störmer, J.S. Weiner, L.N. Pfeiffer, K.W. Baldwin, and K.W. West, Phys. Rev. Lett. 71, 613 (1993).

    Article  ADS  Google Scholar 

  4. L. Brey, N.F. Johnson, and B.I. Halperin, Phys. Rev. B40, 10647 (1989).

    Article  ADS  Google Scholar 

  5. M. Chen, W. Porod, and D.J. Kirkner, J. Appl. Phys. 75, 2545 (1994).

    Article  ADS  Google Scholar 

  6. J.H. Davies and I.A. Larkin, Phys. Rev. B49, 4800 (1994).

    Article  ADS  Google Scholar 

  7. H. Drexler, W. Hansen, J.P. Kotthaus, M. Holland, and S.P. Beaumont, Semicond. Sci. Technol. 7, 1008 (1992).

    Article  ADS  Google Scholar 

  8. H. Drexler, W. Hansen, J.P. Kotthaus, M. Holland, and S.P. Beaumont, Phys. Rev. B46, 12849 (1992).

    Article  ADS  Google Scholar 

  9. H. Drexler, W. Hansen, S. Manus, J.P. Kotthaus, M. Holland, and S.P. Beaumont, Phys. Rev. B 49, 14074 (1994).

    Article  ADS  Google Scholar 

  10. H. Drexler, W. Hansen, J.P. Kotthaus, M. Holland, and S.P. Beaumont, Appl. Phys. Lett. 64, 2270 (1994).

    Article  ADS  Google Scholar 

  11. H. Drexler, W. Hansen, S. Manus, J.P. Kotthaus, M. Holland, S.P. Beaumont, European Physical Society (EPS) “14th General Conference, GCCMD-14”, Madrid, March 1994, Physica Scripta T55, 65 (1994).

    Google Scholar 

  12. H. Drexler, D. Leonard, W. Hansen, J.P. Kotthaus, P.M. Petroff, Phys. Rev. Lett. 73, 2252 (1994).

    Article  ADS  Google Scholar 

  13. A.L. Efros, F.G. Pikus, and G.G. Samsonidze, Phys. Rev. B41, 8295 (1990).

    Article  ADS  Google Scholar 

  14. J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 68, 674 (1992).

    Article  ADS  Google Scholar 

  15. V. Fock, Z. Phys. 47, 446 (1928).

    Article  ADS  Google Scholar 

  16. see e.g. The Physics of Few-Electron Nanostructures, eds. L.J. Geerlings, C.J.P.M. Harmans, L.P. Kouwenhoven, Physica B 189 (1–4) (1993).

    Google Scholar 

  17. L.I. Glazman, I.M. Ruzin, and B.I. Shklovskii, Phys. Rev. B45, 8454 (1992).

    Article  ADS  Google Scholar 

  18. A. Gold, Appl. Phys. Lett. 54, 2100 (1989).

    Article  ADS  Google Scholar 

  19. L. Calmels and A. Gold, Physica C 235–240, 2371 (1994).

    Article  Google Scholar 

  20. A Gold and A. Ghazali, Phys. Rev. B49, 16480 (1994).

    Article  ADS  Google Scholar 

  21. A.O. Govorov, Proc. MSS-7, Madrid 1995, in press

    Google Scholar 

  22. W. Hansen, M. Horst, J.P. Kotthaus, U. Merkt, Ch. Sikorski, and K. Ploog, Phys. Rev. Lett. 58, 2586 (1987).

    Article  ADS  Google Scholar 

  23. W. Hansen, in Festkörperprobleme (Advances in Solid State Physics) Vol. 28, edited by U. Rössler (Vieweg, Braunschweig, 1988) p. 121.

    Google Scholar 

  24. W. Hansen, T.P. Smith III, K.Y. Lee, J.A. Brum, C.M. Knoedler, J.M. Hong, and D.P. Kern, Phys. Rev. Lett. 62, 2168 (1989).

    Article  ADS  Google Scholar 

  25. W. Hansen, in “Physics of Nanostructures”, eds. J.H. Davies and D.A. Long (SUSSP and IOP, Bristol 1992), p. 257.

    Google Scholar 

  26. W. Hansen, A. Schmeller, H. Drexler, J.P. Kotthaus, M. Holland, G. Tränkle, G. Böhm, and G. Weimann, Semicond. Sci. Technol. 9, 1946 (1994).

    Article  ADS  Google Scholar 

  27. B. Yu-Kuang Hu and S. Das Sarma, Phys. Rev. Lett. 68, 1750 (1992).

    Article  ADS  Google Scholar 

  28. C.L. Kane and M.P.A. Fisher, Phys. Rev. Lett. 68, 1220 (1992), C.L. Kane and M.P.A. Fisher, Phys. Rev. B46, 15233 (1992).

    Article  ADS  Google Scholar 

  29. J.M. Kinaret and P.A. Lee, Phys. Rev. B42, 11768 (1990).

    Article  ADS  Google Scholar 

  30. W. Kohn, Phys. Rev. 123, 1242 (1961).

    Article  MATH  ADS  Google Scholar 

  31. J.P. Kotthaus and D. Heitmann, Surf. Sci. 113, 481 (1982).

    Article  ADS  Google Scholar 

  32. S.V. Kravchenko, P.M. Pudalov, and S.G. Semenchinsky, Physics Letters A 141, 71 (1989).

    Article  ADS  Google Scholar 

  33. D. Leonard, M. Krishnamurthy, C.M. Reaves, S.P. Denbaars, P.M. Petroff, Appl. Phys. Lett. 63, 3203, (1993).

    Article  ADS  Google Scholar 

  34. J.-Y. Marzin, J.-M. Gerard, A. Izrael, D. Barrier, and D. Bastard, Phys. Rev. Lett. 73, 716 (1994).

    Article  ADS  Google Scholar 

  35. K.A. Matveev and L.I. Glazman, Phys. Rev. Lett. 70, 990 (1993).

    Article  ADS  Google Scholar 

  36. P.L. McEuen, E.B. Foxman, J. Kinaret, U. Meirav, M.A. Kastner, N.S. Wingreen and S.J. Wind, Phys. Rev. B45, 11419 (1992).

    Article  ADS  Google Scholar 

  37. G. Medeiros-Ribeiro, D. Leonard, P.M. Petroff, Appl. Phys. Lett. 66, 1767 (1995).

    Article  ADS  Google Scholar 

  38. B. Meurer, J.P. Vieren, Y. Guldner, and K. Ploog, Appl. Phys. Lett. 63, 3063 (1993).

    Article  ADS  Google Scholar 

  39. R.J. Nicholas, R.J. Huag, K. v. Klitzing, and G. Weimann, Phys. Rev. B37, 1294 (1988).

    Article  ADS  Google Scholar 

  40. John A. Nixon and J.H. Davies, Phys. Rev. B41, 7929 (1990).

    Article  ADS  Google Scholar 

  41. D. Pfannkuche, this volume.

    Google Scholar 

  42. A. Pinczuk, B.S. Dennis, D. Heiman, C. Kallin, L. Brey, C. Tejedor, S. Schmitt-Rink, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 68, 3623 (1993).

    Article  ADS  Google Scholar 

  43. H.J. Schulz, Phys. Rev. Lett. 71, 1864 (1993).

    Article  ADS  Google Scholar 

  44. K. Shepard, Phys. Rev. B45, 13431 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  45. C.W. Snyder, B.G. Orr, D. Kessler, and L.M. Sander, Phys. Rev. Lett. 66, 3032 (1991).

    Article  ADS  Google Scholar 

  46. H.L. Störmer, R. Dingle, A.C. Gossard, W. Wiegmann, and M.D. Sturge, J. Vac. Sci. Technol. 16, 1517 (1979).

    Article  ADS  Google Scholar 

  47. F. Thiele, E. Batke, V. Dolgopolov, and J.P. Kotthaus, Phys. Rev. B 40, 1414 (1989).

    Article  ADS  Google Scholar 

  48. T.P. Smith, B.B. Goldberg, P.J. Stiles, and M. Heiblum, Phys. Rev. B32, 2696 (1985).

    Article  ADS  Google Scholar 

  49. T.P. Smith III, W.I. Wang, and P.J. Stiles, Phys. Rev. B34, 2995 (1986).

    Article  ADS  Google Scholar 

  50. T.P. Smith, III, H. Arnot, J.M. Hong, C.M. Knoedler, S.E. Laux, and H. Schmid, Phys. Rev. Lett. 59, 2802 (1987).

    Article  ADS  Google Scholar 

  51. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

    Article  ADS  Google Scholar 

  52. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, J. Phys. C21, L209 (1988).

    Article  ADS  Google Scholar 

  53. D.A. Wharam, this volume.

    Google Scholar 

  54. J. Wrobel, F. Kuchar, K. Ismail, K.Y. Lee, H. Nickel, W. Schlapp, G. Grabecki, and T. Dietl, Surface Science 305, 615 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reinhard Helbig

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Hansen, W., Drexler, H. (1996). Spectroscopy on field-effect induced quantum wires and quantum dots. In: Helbig, R. (eds) Advances in Solid State Physics 35. Advances in Solid State Physics, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107541

Download citation

  • DOI: https://doi.org/10.1007/BFb0107541

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08043-3

  • Online ISBN: 978-3-540-75334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics