Skip to main content

Selection rules for spectroscopy of quantum dots

  • Chapter
  • First Online:
Advances in Solid State Physics 35

Part of the book series: Advances in Solid State Physics ((ASSP,volume 35))

Abstract

Coulomb interaction between electrons substantially influences the properties of quantum dots. Its effect on the ground state energy becomes most obvious in the Coulomb blockade of transport and single electron tunneling. More subtly, the Coulomb interaction affects the few-particle wave functions by introducing strong correlations between the electrons. These correlations in turn give rise to selection rules for transport spectroscopy in quantum dots. These rules favor collective modes for observation in non-linear conductance experiments, and therefore their excitations dominate tunneling spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. C. Ashoori et al., Phys. Rev. Lett. 68, 3088 (1992).

    Article  ADS  Google Scholar 

  2. P. L. McEuen et al., Phys. Rev. Lett. 66, 1926 (1991).

    Article  ADS  Google Scholar 

  3. A. T. Johnson et al., Phys. Rev. Lett. 69, 1592 (1992).

    Article  ADS  Google Scholar 

  4. A. Kumar, S. E. Laux, and F. Stern, Phys. Rev. B 42, 5166 (1990).

    Article  ADS  Google Scholar 

  5. U. Merkt, Physica B 189, 165 (1993).

    Article  ADS  Google Scholar 

  6. M. Taut, Phys. Rev. A 48, 3561 (1993).

    Article  ADS  Google Scholar 

  7. C. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989).

    Article  ADS  Google Scholar 

  8. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 64, 788 (1990).

    Article  ADS  Google Scholar 

  9. B. Meurer, D. Heitmann, and K. Ploog, Phys. Rev. Lett. 68, 1371 (1992).

    Article  ADS  Google Scholar 

  10. D. Heitmann and J. Kotthaus, Physics Today 56 (1993).

    Google Scholar 

  11. P. Bakshi, D. A. Broido, and K. Kempa, Phys. Rev. B 42, 7416 (1990).

    Article  ADS  Google Scholar 

  12. U. Merkt, J. Huser, and M. Wagner, Phys. Rev. B 43, 7320 (1991).

    Article  ADS  Google Scholar 

  13. Q. P. Li et al., Phys. Rev. B 43, 5151 (1991).

    Article  ADS  Google Scholar 

  14. T. Darnhofer and U. Rössler, Phys. Rev. B 47, 16020(RC) (1993).

    Article  ADS  Google Scholar 

  15. P. Junker et al., Phys. Rev. B 49, 4794 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Alsmeier, E. Batke, and J. P. Kotthaus, Phys. Rev. B 41, 1699 (1990).

    Article  ADS  Google Scholar 

  17. A. Lorke, J. P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 64, 2559 (1990).

    Article  ADS  Google Scholar 

  18. D. Pfannkuche, V. Gudmundsson, P. Hawrylak, and R. R. Gerhardts, Solid State Electronics 37, 1221 (1994).

    Article  ADS  Google Scholar 

  19. Z. Ye and E. Zaremba, Phys. Rev. B 50, 17217 (1994).

    Article  ADS  Google Scholar 

  20. P. A. Maksym and T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990).

    Article  ADS  Google Scholar 

  21. W. Häusler and B. Kramer, Phys. Rev. B 47, 2244 (1993).

    Article  Google Scholar 

  22. R. C. Ashoori et al., Phys. Rev. Lett. 71, 613 (1993).

    Article  ADS  Google Scholar 

  23. J. Palacios, L. Martín-Moreno, J. Oaknin, and C. Tejedor, Superlattices and Microstructures 15, 91 (1994).

    Article  ADS  Google Scholar 

  24. J. M. Kinaret et al., Phys. Rev. B 46, 4681 (1992).

    Article  ADS  Google Scholar 

  25. Single Charge Tunneling, Vol. 294 of NATO ASI, edited by H. Grabert and M. Devoret (Plenum, New York, 1992).

    Google Scholar 

  26. E. B. Foxman et al., Phys. Rev. B 47, 10020 (1993).

    Article  ADS  Google Scholar 

  27. J. Weis, R. J. Haug, K. v. Klitzing, and K. Ploog, Phys. Rev. B 46, 12837 (1992).

    Article  ADS  Google Scholar 

  28. J. Weis, R. J. Huag, K. v. Klitzing, and K. Ploog, Phys. Rev. Lett. 71, 4019 (1993).

    Article  ADS  Google Scholar 

  29. D. Pfannkuche and S. E. Ulloa, Phys. Rev. Lett. 74, 1194 (1995).

    Article  ADS  Google Scholar 

  30. J. J. Palacios, L. Martín-Moreno, and C. Tejedor, Europhys. Lett. 23, 495 (1993).

    Article  ADS  Google Scholar 

  31. D. Weinmann et al., Europhys. Lett. 26, 467 (1994).

    Article  ADS  Google Scholar 

  32. D. Weinmann, W. Häusler, and B. Kramer, Phys. Rev. Lett. 74, 984 (1995).

    Article  ADS  Google Scholar 

  33. D. Pfannkuche and R. R. Gerhardts, Physica B 189, 6 (1993).

    Article  ADS  Google Scholar 

  34. C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991).

    Article  ADS  Google Scholar 

  35. Channel through excited states in resonance with left reservoir requires: E(N,α)−E(N−1,α′)L and E(N,0)−E(N−1,0)>-μR; Channel through excited states in resonance with right reservoir requires: E(N,α)−E(N−1,α′)=μR and E(N,0)−E(N−1,0)<-μL.

    Google Scholar 

  36. Due to the non-linear transport properties the probabilities and the current, eq. (3.3), have to be calculated for two close values of the bias voltage V DS±δV (δV=0.5×10−3 meV) to obtain the differential conductance, G=e(I(V DS+δV)−I(VDS−δV))/(2δV).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reinhard Helbig

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Pfannkuche, D., Ulloa, S.E. (1996). Selection rules for spectroscopy of quantum dots. In: Helbig, R. (eds) Advances in Solid State Physics 35. Advances in Solid State Physics, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107540

Download citation

  • DOI: https://doi.org/10.1007/BFb0107540

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08043-3

  • Online ISBN: 978-3-540-75334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics