Skip to main content

Using tactile data for real-time feedback

  • Section 3: Perception
  • Conference paper
  • First Online:
Experimental Robotics I

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 139))

Abstract

Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. In this paper, we describe a controller that utilizes a Lord LTS 210 tactile sensor in the feedback loop of a manipulator to track edges in real-time. In our control system the data from the tactile sensor is processed in two stages to determine the location of edges. The parameters of these edges are then used to generate a control signal to drive the manipulator. The edge tracker has been implemented on the CMU Direct Drive Arm Il system. We describe both theory and experimental implementation of tactile edge detection and an edge tracking controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Agrawal. An Overview of Tactile Sensing. University of Michigan, Ann Arbor, 1986.

    Google Scholar 

  2. P. Allen. Surface Descriptions from Vision and Touch. Proc IEEE Conf on Robotics and Automation:394–397, 1984.

    Google Scholar 

  3. R. Bajcsy. What can we learn from one finger experiments? In M. Brady and R. Paul (editor), The First International Symposium on Robotics Research. MIT Press, Cambridge, MA, 1984.

    Google Scholar 

  4. D.H. Ballard, C.M. Brown. Computer Vision. Prentice Hall, Englewood Cliffs, N.J., 1982.

    Google Scholar 

  5. A.D. Berger, and P.K. Khosla. Edge Detection for Tactile Sensing. Proc. SPIE's Cambridge Symposium on Optical and Optoelectronic Engineering: Advances in Intelligent Robotics Systems, November, 1988.

    Google Scholar 

  6. A.D. Berger, and P.K. Khosla. The Modified Adaptive Hough Transform (MAHT). Technical Report, Dept. of Electrical and Computer Engineering, Carnegie Mellon University, 1988.

    Google Scholar 

  7. Alan D. Berger. On Using a Tactile Sensor for Real-Time Feature Extraction. Master's thesis, Carnegie-Mellon University, December, 1988.

    Google Scholar 

  8. A.D. Berger and P.K. Khosla. Real-Time Edge Tracking Using a Tactile Sensor. Proc. NASA Conference on Space Telerobotics, February, 1989.

    Google Scholar 

  9. A.D. Berger and P.K. Khosla. International Journal of Robotics Research, MIT Press, (in press),.

    Google Scholar 

  10. J.B. Burns, A.R. Hanson, and E.M. Riseman. Extracting Straight Lines. IEEE Trans. on Pattern Analysis and Machine Intelligence 8(4):425–455, July, 1986.

    Google Scholar 

  11. H. Chang, K. Ikeuchi, and T. Kanade. Model-Based Vision System by Object-Oriented Programming. Technical Report CMU-RI-TR-88-3, Carnegie Mellon University Robotics Institute, February, 1988.

    Google Scholar 

  12. R.T. Chin, C.R. Dyer. Model-Based Recognition in Robot Vision. ACM Computing Surveys 18(1):67–90, March, 1986.

    Google Scholar 

  13. P. Dario, M. Bergamasco, D. Femi, A. Fiorillo, A. Vaccarelli. Tactile Perception in Unstructured Environments: A Case Study for Rehabilitative Robotics Applications. Proc IEEE Conf on Robotics and Automation 3:2047–2054, 1987.

    Google Scholar 

  14. P. Dario, and G. Buttazzo. An Anthropomorphic Robot Finger for Investigating Artificial Tactile Perception. International Journal of Robotics Research 6(3):25–48, Fall, 1987.

    Google Scholar 

  15. D.R. Doll. Data Communications: Facilities, Networks and Systems Design. J. Wiley and Sons, New York, 1978.

    Google Scholar 

  16. Duda and Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, New York, 1973.

    Google Scholar 

  17. R.E. Ellis. Acquiring Tactile Data for the Recognition of Planar Objects. Proc IEEE Conf on robotics and Automation 3:1799–1805, 1987.

    Google Scholar 

  18. R.S. Fearing, and T.O. Binford. Using a Cylindrical Tactile Sensor for Determining Curvature. Proc IEEE Conf on Robotics and Automation:765–771, 1988.

    Google Scholar 

  19. W.E.L. Grimson, and T. Lozano-Perez. Model-Based Recognition and Localization from Tactile Data. Proc IEEE Conf on Robotics and Automation:248–255, 1984.

    Google Scholar 

  20. L.D. Harmon. Automated Tactile Sensing. IJRR 1(2):3–30, Summer, 1982.

    Google Scholar 

  21. L.D. Harmon. Automated Touch Sensing: A Brief Perspective and Several New Approaches. Proc. IEEE Int. Conf. on Robotics:326–331, 1984.

    Google Scholar 

  22. J. Illingworth, and J. Kittler. The Adaptive Hough Transform. IEEE PAMI 9(5):690–698, September, 1987.

    Google Scholar 

  23. P.K. Khosla and T. Kanade. Experimental Evaluation of the Feedforward Compensation and Computed-Torque Control Schemes. In Stear, E.B. (editor), Proceedings of the 1986 ACC. AAAC, Seattle, WA, June 18–20, 1986.

    Google Scholar 

  24. R.L. Klatzky, R. Bajcsy, and S.J. Lederman. Object Exploration in One and Two Fingered Robots. PROC IEEE Conf on Robotics and Automation 3:1806–1809, 1987.

    Google Scholar 

  25. Lord LTS-210 Tactile Sensor. Installation and Operations Manual. Lord Corp., Cary, North Carolina, 1987.

    Google Scholar 

  26. Marinco APB-3024M Array Processor Board. Reference Manual. Marinco, Inc., 3878-A Ruffin Road, San Diego, CA 92123, 1983.

    Google Scholar 

  27. M.T. Mason. Compliance and Force Control for Computer Controlled Manipulators. IEEE Trans. on Systems, Man and Cybernetics 11(6), 1981.

    Google Scholar 

  28. G.A. McAlpine. Tactile Sensing. Sensors:7–16, April, 1986.

    Google Scholar 

  29. Montana, D.J. Tactile Sensing and Kinematics of Contact. PhD thesis, Division of Applied Sciences, Harvard University, August, 1986.

    Google Scholar 

  30. C. Muthukrishnan, D. Smith, D. Myers, J. Rebman, and A. Koivo. Edge Detection In Tactile Images. Proc. IEEE Conf. on Robotics and Automation 3:1500–1505, April, 1987.

    Google Scholar 

  31. M.H. Raibert and J.J. Cralg. Hybrid Position/Force Control of Manipulators. J. Dynamic Systems, Measurement, Control, 1981.

    Google Scholar 

  32. A.A.G. Requicha. Representations for Rigid Solids: Theory, Methods, and Systems. ACM Computing Surveys 12(4):437–464, December, 1980.

    Google Scholar 

  33. J.L. Schneiter. An Objective Tactile Sensing Strategy for Object Recognition and Localization. Proc. IEEE Int'l Conf. on Robotics and Automation:1262–1267, April, 1986.

    Google Scholar 

  34. S.A. Stansfield. Primitives, Features, and Exploratory Procedures: Bullding a Robot Tactile Perception System. Proc IEEE Conf on Robotics and Automation 2:1274–1279, 1986.

    Google Scholar 

  35. S. A. Stansfield. Visually Aided Tactile Exploration. Proc. IEEE Int'l Conf. on Robotics and Automation:1487–1492, April, 1987.

    Google Scholar 

  36. S.A. Stansfield. Representing Generic Objects for Exploration and Recognition. Proc IEEE Conf on Robotics and Automation 2:1090–1095, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vincent Hayward Oussama Khatib

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Berger, A.D., Khosla, P.K. (1990). Using tactile data for real-time feedback. In: Hayward, V., Khatib, O. (eds) Experimental Robotics I. Lecture Notes in Control and Information Sciences, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0042536

Download citation

  • DOI: https://doi.org/10.1007/BFb0042536

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52182-2

  • Online ISBN: 978-3-540-46917-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics