Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 67))

Abstract

The profile analysis of WAXS data yields informations in term of crystallite size, microstrain and about the crystallite size and strain distribution.

The average crystalline particle size is derived from the half width line broadening, all other results are calculated from the parameters of the investigated line profile.

The line broadening of the experimental profile consists always of an instrumental line broadening and a structural line broadening. The former could be measured separately by using standard samples, which have infinite large crystallites and have no strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Stokes, A. R.: Proc. Philos. Soc. London A61, 382 (1948)

    Google Scholar 

  2. Warren, B. E., Averbach, B. L.: J. Appl. Phys., 23, 497 (1952)

    Google Scholar 

  3. Wilson, A. J. C.: X-Ray Optics (Methuen and Co, London, 1949) p. 5

    Google Scholar 

  4. Klug, H. P., Alexander, L. E.: X-Ray Diffraction Procedures (John Wiley, New York 1954) Chap. 9.

    Google Scholar 

  5. Katayama, K.: J. Phys. Soc. Japan 16, 462 (1961)

    Google Scholar 

  6. Bonart, R., Hosemann, R., McCullogh, R. L.: Polymer 4 199–210 (1963)

    Google Scholar 

  7. Thielke, H. G., Billmeyer, F. W.: J. Polym. Sci. A2, 2947–2950 (1964)

    Google Scholar 

  8. Schoening, F. R. L.: Acta Cryst. 18 975–976 (1965)

    Google Scholar 

  9. Wagner, C. N. J.: in Local Atomic Arrangements Studied by X-Ray Diffraction, Metallurgical Society Conf. Vol. 36, p. 217–269. Edited by Cohen J. B. and Hilliard J. E., Gordon and Breach, New York, 1965

    Google Scholar 

  10. Buchanan, D. R., Miller, R. L.: J. Appl. Phys. 37, 4003–4012 (1966)

    Google Scholar 

  11. Takahashi, H.: J. Phys. Soc. Japan 27, 708 (1969)

    Google Scholar 

  12. Kulshreshtha, A. K., Dweltz, N. W.: Acta Crystallogr. A27, 670 (1971)

    Google Scholar 

  13. Wecker, S. M., Cohen, J. B., Davidson, T.: J. Appl. Phys. 45 4453–57 (1974).

    Google Scholar 

  14. Schönfeld, A., Wilke, W., Höhne, G., Hosemann, R.: Koll. Z. u. Z. Polym. 250, 102 (1972)

    Google Scholar 

  15. Vogel, W., Haase, J., Hosemann, R.: Z. Naturforch 29a 1152–58 (1974)

    Google Scholar 

  16. Gangulee, A.: J. Appl. Cryst. 7, 434–439 (1974)

    Google Scholar 

  17. Mignot, J., Rondot, D.: Acta Metallurgica 23 1321–24 (1975)

    Google Scholar 

  18. Langford, J. I.: J. Appl. Cryst 11, 10–14 (1978)

    Google Scholar 

  19. Ambramowitz, M., Stegun, I. A. (1965) Handbook of Mathematical Functions. New York. Dower.

    Google Scholar 

  20. Dekeijser, Th. H., Langford, J. I., Mittemeijer, E. J., Vogels, B. P.: J. Appl. Cryst 15, 308–314 (1982)

    Google Scholar 

  21. Halder, N. C., Wagner, C. N.: Acta Cryst. 20 312–313 (1966)

    Google Scholar 

  22. Delhez, R., DeKeijser, Th. H., Mittemijer, E. J.: Fresenius Z. Anal. Chem. 312, 1–16 (1982)

    Google Scholar 

  23. Crist, B., Cohen, J. B.: J. Polym. Sci. Polymer Physics Edition, 17, 1001–1010 (1979)

    Google Scholar 

  24. Strobl, G. R., Hagedorn, W.: J. Polym. Sci. Polym. Phys. 16, 1181–93 (1978)

    Google Scholar 

  25. Glotin, M., Mandelkern, I.: Colloid Polym. Sci. 260, 182–192 (1982).

    Google Scholar 

  26. Kidron, A., De Angelis, R. J.: In Symposium on Computer Aided Engineering, Gladwell, G.M.L. Ed. Univ. of Waterloo, Canada 1971 pp. 285–297

    Google Scholar 

  27. Schmidt, W.: Dissertation, Berlin 1980

    Google Scholar 

  28. Krenzer, E., Ruland, W.: Colloid Polym. Sci. 259, 405–412 (1981)

    Google Scholar 

  29. McKeehan, M., Warren, B. E.: J. Appl. Phys. 24, 52–56 (1953)

    Google Scholar 

  30. Bertaut, E. F.: Comp. Rend. 228, 187 (1949)

    Google Scholar 

  31. Bertaut, E. F.: Acta Cryst. 3, 14 (1950)

    Google Scholar 

  32. Bertaut, E. F.: Acta Cryst. 5, 117 (1952)

    Google Scholar 

  33. Doi, K.: Acta Cryst. 14, 830 (1961)

    Google Scholar 

  34. Yoda, O., Doi, K., Tamura, N., Kuriyama, I.: J. Appl. Phys. 44, 2211–2217 (1973)

    Google Scholar 

  35. Yoda, O., Tamura, N., Doi, K.: J. Materials Sci. 11, 696–702 (1976)

    Google Scholar 

  36. Yoda, O., Kuriyama, I.: J. Polym. Sci. Phys. Ed. 15 787–793 (1977)

    Google Scholar 

  37. Odajima, A., Noto, N., Yamane, S., Ishibashi, T.: Report on Progress in Polymer Physics in Japan 23, 205–208 (1980)

    Google Scholar 

  38. Bodor, G., Füzes, L.: Crystalline Particle Size Distribution Determination. Conference on Diffraction Profile Analysis, Cracow, Poland 1978

    Google Scholar 

  39. Bodor, G., Füzes, L.: JUPAC Int. Symposium, Amherst, Mass. U.S.A. 1982. Proceedings p. 653.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. H. Kausch H. G. Zachmann

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this paper

Cite this paper

Bodor, G. (1985). X-ray line shape analysis. A means for the characterization of crystalline polymers. In: Kausch, H.H., Zachmann, H.G. (eds) Characterization of Polymers in the Solid State II: Synchrotron Radiation, X-ray Scattering and Electron Microscopy. Advances in Polymer Science, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0016609

Download citation

  • DOI: https://doi.org/10.1007/BFb0016609

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13780-1

  • Online ISBN: 978-3-540-39044-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics