Skip to main content

Hairy Roots as a Source of Tropane Alkaloids

  • Chapter
  • First Online:
Hairy Root Cultures Based Applications

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

The hairy roots developed after Agrobacterium rhizogenes transformation can be used for the production of secondary metabolites which show medicinal properties. Plant secondary metabolites include various classes of chemical compounds, such as the tropane alkaloids found in some members of the Solanaceae family, for example, Atropa belladonna, Datura stramonium, D. innoxia, Hyoscyamus muticus, and H. niger. This chapter presents the strategy for producing tropane alkaloids such as scopolamine and hyoscyamine by the hairy roots of these species. High biomass production of D. stramonium and D. innoxia hairy roots and the associated bioactive compounds can be enabled by optimization of the medium. In addition, scopolamine and hyoscyamine production can be enhanced by optimizing various culture conditions, such as the type of the medium or sucrose concentration, and the ploidy level of H. muticus hairy roots. Their production by A. belladonna hairy roots can also be influenced by the ammonium or nitrate concentration of the medium. Tropane alkaloid production by hairy roots can be significantly increased by the use of elicitor treatments such as chitosan, acetic acid, citric acid, jasmonic acid, acetylsalicylic acid, or aluminum chloride: for example, treatment with Tween 20, combined with L-phenylalanine or DL-ß-phenyllactic acid alone or with tropinone feeding, increased the level of hyoscyamine released into the medium by D. innoxia hairy roots. Secondary metabolite production can also be improved by transgenic manipulation: tropane alkaloid biosynthesis can be raised by overexpression of the genes encoding the enzymes involved in the tropane alkaloid biosynthesis pathway such as hyoscyamine-6ß-hydroxylase (H6H), putrescine N-methyltransferase (PMT), or tropinone reductase I and II (TR I and TR II). Alkaloid production can be influenced by overexpression of genes encoding enzymes involved in the tropane alkaloid biosynthesis pathway, as well as by genetic manipulation based on gene silencing. The cultivation of D. innoxia and H. niger hairy roots in bubbling bioreactors may also serve as an efficient culture for large-scale tropane alkaloid production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander J, Benford D, Cockburn A, Cravedi J-P, Dogliotti E, Di Domenico A, Férnandez-Cruz ML, Fürst P, Fink-Gremmels J, Galli CL, Grandjean P, Gzyl J, Heinemeyer G, Johansson N, Mutti A, Schlatter J, van Leeuwen R, Van Peteghem C, Verger P (2008) Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on tropane alkaloids (from Datura sp.) as undesirable substances in animal feed. EFSA J 691:1–55

    Google Scholar 

  • Asl KR, Hosseini B, Sharafi A, Palazon J (2019) Influence of nano-zinc oxide on tropane alkaloid production, h6h gene transcription and antioxidant enzyme activity in Hyoscyamus reticulatus L. hairy roots. Eng Life Sci 19:73–89

    CAS  Google Scholar 

  • Baíza AM, Quiroz A, Ruız JA, Maldonado-Mendoza I, Loyola-Vargas VM (1998) Growth patterns and alkaloid accumulation in hairy root and untransformed root cultures of Datura stramonium. Plant Cell Tissue Organ Cult 54:123–130

    Google Scholar 

  • Bensaddek L, Gillet F, Saucedo JEN, Fliniaux M-A (2001) The effect of nitrate and ammonium concentrations on growth and alkaloid accumulation of Atropa belladonna hairy roots. J Biotechnol 85:35–40

    CAS  PubMed  Google Scholar 

  • Boitel-Conti M, Laberche J-C, Lanoue A, Ducrocq C, Sangwan-Norreel BS (2000) Influence of feeding precursors on tropane alkaloid production during an abiotic stress in Datura innoxia transformed roots. Plant Cell Tissue Organ Cult 60:131–137

    CAS  Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Fliniaux MA (2000) Effects of the rol C gene on hairy root: induction development and tropane alkaloid production by Atropa belladonna. J Nat Prod 63:1249–1252

    CAS  PubMed  Google Scholar 

  • Brown JH, Taylor P (2006) Goodman & Gilman’s the pharmacological basis of therapeutics, 11th edn, Brunton LL, Lazo JS, Parker KL (eds) Muscarinic receptor agonists and antagonists. McGraqw-Hill Medical Publishing Division, New York, pp 183–200

    Google Scholar 

  • Cardillo AB, Giulietti AM, Palazón J, Bonfill M (2013) Influence of hairy root ecotypes on production of tropane alkaloids in Brugmansia candida. Plant Cell Tissue Organ Cult 114:305–312. https://doi.org/10.1007/s11240-013-0326-y

    Article  CAS  Google Scholar 

  • Cardillo AB, Talou JR, Giulietti AM (2015) Biotechnological approaches for the improvement in the production of tropane alkaloids: implications and medicinal applications. In: Sobarzo-Sánchez E (ed) Alkaloids biosynthesis, biological roles and health benefits. Nova Science Publishers, Inc., New York, pp 131–154

    Google Scholar 

  • Chashmi NA, Sharifi M, Karimi F, Rahnama H (2010) Differential production of tropane alkaloids in hairy roots and in vitro cultured two accessions of Atropa belladonna L. under nitrate treatments. Z Naturforsch 65:373–379

    CAS  Google Scholar 

  • Christen P, Aoki T, Shimomura K (1992) Characteristics of growth and tropane alkaloid production in Hyoscyamus albus hairy roots transformed with Agrobacterium rhizogenes A4. Plant Cell Rep 11:597–600

    CAS  PubMed  Google Scholar 

  • Dechaux C, Boitel-Conti M (2005) A strategy for over accumulation of scopolamine in Datura innoxia hairy root cultures. Acta Biol Cracov Ser Bot 47(1):101–107

    Google Scholar 

  • Dehghan E, Häkkinen ST, Oksman-Caldentey K-M, Ahmadi FS (2012) Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.). Plant Cell Tissue Organ Cult 110:35–44. https://doi.org/10.1007/s11240-012-0127-8

    Article  CAS  Google Scholar 

  • elJaber-Vazdekis N, Barres ML, Ravelo AG, Zarate R (2008) Effects of elicitors on tropane alkaloids and gene expression in Atropa baetica transgenic hairy roots. J Nat Prod 71:2026–2031

    CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    CAS  PubMed  Google Scholar 

  • Griffin WJ, Lin D (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53:623–637

    CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Gadzikowska M (2008) Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharamco Rep 60:439–463

    CAS  Google Scholar 

  • Habibi P, Piri K, Deljo A, Moghadam YA, Ghiasvand T (2015) Increasing scopolamine content in hairy roots of Atropa belladonna using bioreactor. Braz Arch Biol Technol 58(2):166–174

    CAS  Google Scholar 

  • Häkkinen ST, Moyano E, Cusidó RM, Palazón J, Piñol MT, Oksman-Caldentey K-M (2005) Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6b-hydroxylase. J Exp Bot 56(420):2611–2618. https://doi.org/10.1093/jxb/eri253

    Article  PubMed  Google Scholar 

  • Heller R (1953) Researchers on the mineral nutrition of plant tissues. Ann Sci Nat Bot Biol Veg 11th Ser 14:1–223

    Google Scholar 

  • Hilton MG, Rhodes MJC (1994) The effect of varying levels of Gamborg’s B5 salts and temperature on the accumulation of starch and hyoscyamine in batch cultures of transformed roots of Datura stramonium. Plant Cell Tissue Organ Cult 38:45–51

    CAS  Google Scholar 

  • Jaremicz Z, Luczkiewicz M, Kokotkiewicz A, Krolicka A, Sowinski P (2014) Production of tropane alkaloids in Hyoscyamus niger (black henbane) hairy roots grown in bubble-column and spray bioreactors. Biotechnol Lett 36:843–853. https://doi.org/10.1007/s10529-013-1426-9

    Article  CAS  PubMed  Google Scholar 

  • Jouhikainen K, Lindgren L, Jokelainen T, Hiltunen R, Teeri TH, Oksman-Caldentey K-M (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208:545–551

    CAS  Google Scholar 

  • Jung H-Y, Kang S-M, Kang Y-M, Kang M-J, Yun D-J, Bahk J-D, Yang J-K, Choi M-S (2003) Enhanced production of scopolamine by bacterial elicitors in adventitious hairy root cultures of Scopolia parviflora. Enzym Microb Technol 33:987–990

    CAS  Google Scholar 

  • Kai G, Li L, Jiang Y, Yan X, Zhang Y, Lu X, Liao P, Chen J (2009) Molecular cloning and characterization of two tropinone reductases in Anisodus acutangulus and enhancement of tropane alkaloid production in AaTRI-transformed hairy roots. Biotechnol Appl Biochem 54:177–186. https://doi.org/10.1042/BA20090171

    Article  CAS  PubMed  Google Scholar 

  • Kai G, Yang S, Luo X, Zhou W, Fu X, Zhang A, Zhang Y, Xiao J (2011) Co-expression of AaPMT and AaTRI effectively enhances the yields of tropane alkaloids in Anisodus acutangulus hairy roots. BMC Biotechnol 11:43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kai G, Zhang A, Guo Y, Li L, Cui L, Luo X, Liu C, Xiao J (2012) Enhancing the production of tropane alkaloids in transgenic Anisodus acutangulus hairy root cultures by over-expressing tropinone reductase I and hyoscyamine-6b-hydroxylase. Mol Bio Syst 8:2883–2890

    CAS  Google Scholar 

  • Kang YM, Lee O-S, Jung H-Y, Kang S-M, Lee B-H, Karigar C, Prasad T, Bahk J-D, Choi M-S (2005) Overexpression of hyoscyamine 6β-hydroxylase (6h6) gene and enhanced production of tropane alkaloids in Scopolia parviflora hairy roots lines. J Micorobiol Biotechnol 15(1):91–98

    CAS  Google Scholar 

  • Kang YM, Park DJ, Min JY, Song HJ, Jeong MJ, Kim YD, Kang SM, Karigar CS, Choi MS (2011) Enhanced production of tropane alkaloids in transgenic Scopolia parviflora hairy root cultures over-expressing putrescine N-methyl transferase (PMT) and hyoscyamine-6β-hydroxylase (H6H). In Vitro Cell Dev Biol-Plant 47:516–524. https://doi.org/10.1007/s11627-011-9367-2

    Article  CAS  Google Scholar 

  • Khanna P, Staba J (1968) Antimicrobials from plant tissue cultures. Lloydia 31:180–189

    Google Scholar 

  • Knop W (1865) Utersuchungenüber den Ernährungensprozeß der Pflanze. Landtw Versuchssat 7:93

    Google Scholar 

  • Kohlenbach HW, Schmidt B (1975) Cytodifferentiation in the mode of a direct transformation of isolated mesophyll cells to tracheids. Z Pflanzenphysiol 75:369–374

    Google Scholar 

  • Kohnen-Johannsen KL, Kayser O (2019) Tropane alkaloids: chemistry, pharmacology, biosynthesis and production. Molecules 24:796. https://doi.org/10.3390/molecules24040796

    Article  CAS  PubMed Central  Google Scholar 

  • Lan X, Quan H (2010) Hairy root culture of Przewalskia tangutica for enhanced production of pharmaceutical tropane alkaloids. J Med Plant Res 4(14):1477–1481. https://doi.org/10.5897/JMPR09.289

    Article  CAS  Google Scholar 

  • Lan X, Zeng J, Liu K, Zhang F, Bai G, Chen M, Liao Z, Huang L (2018) Comparison of two hyoscyamine 6β-hydroxylases in engineering scopolamine biosynthesis in root cultures of Scopolia lurida. Biochem Biophys Res Commun 497:25–31

    CAS  PubMed  Google Scholar 

  • Li L, Wang J, Wang W, Lu Y, Wang Y, Zhou G, Kai G (2008) Optimization of induction and culture conditions and tropane alkaloid production in hairy roots of Anisodus acutangulus. Biotechnol Bioprocess Eng 13:606–612. https://doi.org/10.1007/s12257-008-0035-2

    Article  CAS  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    CAS  Google Scholar 

  • Lloyd GB, McCown BH (1980) Commercially-feasible micropropagation of mountain lamel Kalmia latifolia by use of shoot tip culture. Proc Int Plant Propag Soc 30:421–427

    Google Scholar 

  • Lounasmaa M, Tamminen T (1993) The tropane alkaloids: chemistry and biology. In: Cordell GA (ed) The alkaloids, vol 44. Academic Press, New York, pp 1–114

    Google Scholar 

  • Maldonado-Mendoza IE, Loyola-Vargas VM (1995) Establishment and characterization of photosynthetic hairy root cultures of Datura stramonium. Plant Cell Tissue Organ Cult 40:197–208

    CAS  Google Scholar 

  • Maldonado-Mendoza IE, Ayora-Talavera T, Loyola-Vargas VM (1993) Establishment of hairy root cultures of Datura stramonium. Characterization and stability of tropane alkaloid production during long periods of subculturing. Plant Cell Tissue Organ Cult 33:321–329

    CAS  Google Scholar 

  • Mano Y, Nabeshima S, Matsui C, Ohkawa H (1986) Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric Biol Chem 50(11):2715–2722

    CAS  Google Scholar 

  • Mano Y, Ohkawa H, Yamada Y (1989) Production of tropane alkaloids by hairy root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Sci 59:191–201

    CAS  Google Scholar 

  • Marconi PL, Setten LM, Cálcena EN, Alvarez MA, Pitta-Alvarez SI (2008) Changes in growth and tropane alkaloid production in long-term culture of hairy roots of Brugmansia candida. Electron J Integr Biosci 3(1):38–44

    Google Scholar 

  • Mehrotra S, Srivastava V, ur Rahman L, Kukreja AK (2015) Hairy root biotechnology-indicative timeline to understand missing links and future outlook. Protoplasma 252(5):1189–1201. https://doi.org/10.1007/s00709-015-0761-1

    Article  CAS  PubMed  Google Scholar 

  • Moharrami F, Hosseini B, Sharafi A, Farjaminezhad M (2017) Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of Hyoscyamus reticulatus L. elicited by iron oxide nanoparticles. In Vitro Cell Dev Biol-Plant 53:104–111. https://doi.org/10.1007/s11627-017-9802-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussous A, Paris C, Khelifi-Slaoui M, Bekhouche M, Zaoui D, Rosloski SM, Makhzoum A, Desobry S, Khelifi L (2018) Pseudomonas spp. increases root biomass and tropane alkaloid yields in transgenic hairy roots of Datura spp. In Vitro Cell Dev Biol-Plant 54:117–126. https://doi.org/10.1007/s11627-017-9862-1

    Article  CAS  Google Scholar 

  • Moyano E, Fornalé S, Palazón J, Cusidó RM, Bagni N, Piñol MT (2002) Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene. Phytochemistry 59:697–702

    CAS  PubMed  Google Scholar 

  • Moyano E, Jouhikainen K, Tammela P, Palazón J, Cusidó RM, Piñol MT, Teeri TH, Oksman-Caldentey K-M (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54(381):203–211. https://doi.org/10.1093/jxb/erg014

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    CAS  Google Scholar 

  • Nitsch JP (1951) Growth and development in vitro of excised ovaries. Am J Bot 38:566–577

    CAS  Google Scholar 

  • Nitsch C, Nitsch JP (1967) The induction of flowering in vitro in stem segments of Plumbago indica L. Planta 72:355–370

    CAS  PubMed  Google Scholar 

  • Oksman-Caldentey K-M, Sevón N, Vanhala L, Hiltunen R (1994) Effect of nitrogen and sucrose on the primary and secondary metabolism of transformed root cultures of Hyoscyamus muticus. Plant Cell Tissue Organ Cult 38:263–272

    CAS  Google Scholar 

  • Palazón J, Moyano E, Cusidó RM, Bonfill M, Oksman-Caldentey K-M, Piñol MT (2003) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci 165:1289–1295

    Google Scholar 

  • Palazón J, Navarro-Ocaña A, Hernandez-Vazquez L, Mirjalili MH (2008) Application of metabolic engineering to the production of scopolamine. Molecules 13:1722–1742. https://doi.org/10.3390/molecules13081722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrott AC (1989) Transdermal scopolamine: a review of its effects upon motion sickness, psychological performance, and physiological functioning. Aviat Space Environ Med 60(1):1–9

    CAS  PubMed  Google Scholar 

  • Pitta-Alvarez SI, Giulietti AM (1995) Advantages and limitations in the use of hairy root cultures for the production of tropane alkaloids: use of anti-auxins in the maintenance of normal root morphology. In Vitro Cell Dev Biol-Plant 31:215–220

    Google Scholar 

  • Pitta-Alvarez SI, Giulietti AM (1999) Influence of chitosan, acetic acid and citric acid on growth and tropane alkaloid production in transformed roots of Brugmansia candida. Effect of medium pH and growth phase. Plant Cell Tissue Organ Cult 59:31–38

    CAS  Google Scholar 

  • Pitta–Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzym Microb Technol 26:252–258

    Google Scholar 

  • Qin B, Ma L, Wang Y, Chen M, Lan X, Wu N, Liao Z (2014) Effects of acetylsalicylic acid and UV-B on gene expression and tropane alkaloid biosynthesis in hairy root cultures of Anisodus luridus. Plant Cell Tissue Organ Cult 117:483–490. https://doi.org/10.1007/s11240-014-0454-z

    Article  CAS  Google Scholar 

  • Rhodes MJC, Parr AJ, Giulietti A, Aird ELH (1994) Influence of exogenous hormones on the growth and secondary metabolite formation in transformed root cultures. Plant Cell Tissue Organ Cult 38:143–151

    CAS  Google Scholar 

  • Richter U, Rothe G, Fabian A-K, Rahfeld B, Dräger B (2005) Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. J Exp Bot 56(412):645–652. https://doi.org/10.1093/jxb/eri067

    Article  CAS  PubMed  Google Scholar 

  • Robins RJ, Parr AJ, Payne J, Walton NJ, Rhodes MJC (1990) Factors regulating tropane-alkaloid production in a transformed root culture of a Datura candida x D. aurea hybrid. Planta 181:414–422

    CAS  PubMed  Google Scholar 

  • Robins RJ, Parr AJ, Bent EG, Rhodes MJC (1991) Studies on the biosynthesis of tropane alkaloids in Datura stramonium L. transformed root cultures 1. The kinetics of alkaloid production and the influence of feeding intermediate metabolites. Planta 183:185–195

    CAS  PubMed  Google Scholar 

  • Schenk R, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50(1):199–204

    CAS  Google Scholar 

  • Sikuli NN, Demeyer K (1997) Influence of the ion-composition of the medium on alkaloid production by “hairy roots” of Datura stramonium. Plant Cell Tissue Organ Cult 47:261–267

    Google Scholar 

  • Singh P, Prasad R, Tewari R, Jaidi M, Kumar S, Rout PK, ur Rahman L (2018) Silencing of quinolinic acid phosphoribosyl transferase (QPT) gene for enhanced production of scopolamine in hairy root culture of Duboisia leichhardtii. Sci Rep 8:13939. https://doi.org/10.1038/s41598-018-32396-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spollansky TC, Pitta-Alvarez SI, Giulietti AM (2000) Effect of jasmonic acid and aluminum on production of tropane alkaloids in hairy root cultures of Brugmansia candida. EJB Electron J Biotechnol 3(1)

    Google Scholar 

  • Srivastava V, Mehrotra S, Mishra S (2018) Hairy roots. An effective tool of plant biotechnology. Springer, Singapore

    Google Scholar 

  • Vardja R, Pudersell K, Vardja T, Raal A, Arak E (2004) Tropane alkaloid production and riboflavin excretion by Hyoscyamus niger L. hairy root cultures. Proc Estonian Acad Sci Biol Ecol 53(1):14–24

    CAS  Google Scholar 

  • White PR (1963) The cultivation of animal and plant cells. Ronald Press, New York, p 246

    Google Scholar 

  • Yang C, Chen M, Zeng L, Zhang L, Liu X, Lan X, Tang K, Liao Z (2011) Improvement of tropane alkaloids production in hairy root cultures of Atropa belladonna by overexpressing pmt and h6h genes. Plant Omics J 4(1):29–33

    CAS  Google Scholar 

  • Yu S, Doran PM (1994) Oxygen requirements and mass transfer in hairy root culture. Biotechnol Bioeng 44:880–887

    CAS  PubMed  Google Scholar 

  • Yukimune Y, Hara Y, Yamada Y (1994) Tropane alkaloid production in root cultures of Duboisia myoporoides obtained by repeated selection. Biosci Biotechnol Biochem 58(8):1443–1446. https://doi.org/10.1271/bbb.58.1443

    Article  CAS  Google Scholar 

  • Zárate R (1999) Tropane alkaloid production by Agrobacterium rhizogenes transformed hairy root cultures of Atropa baetica Willk. (Solanaceae). Plant Cell Rep 18:418–423

    Google Scholar 

  • Zárate R, el Jaber-Vazdekis N, Medina B, Ravelo ÁG (2006) Tailoring tropane alkaloid accumulation in transgenic hairy roots of Atropa baetica by over-expressing the gene encoding hyoscyamine 6ß-hydroxylase. Biotechnol Lett 28:1271–1277. https://doi.org/10.1007/s10529-006-9085-8

    Article  CAS  PubMed  Google Scholar 

  • Zeynali Z, Hosseini B, Rezaei E (2016) Effect of elicitation on antioxidant activity and production of tropane alkaloids in Hyoscyamus reticulatus hairy root cultures. Res J Pharmacogn (RJP) 3(3):43–53

    CAS  Google Scholar 

  • Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey K-M, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. PNAS 101(17):6786–6791. https://doi.org/10.1073/pnas.0401391101

  • Zhang L, Yang B, Lu B, Kai G, Wang Z, Xia Y, Ding R, Zhang H, Sun X, Chen W, Tang K (2007) Tropane alkaloids production in transgenic Hyoscyamus niger hairy root cultures over-expressing putrescine N-methyltransferase is methyl jasmonate-dependent. Planta 225:887–896. https://doi.org/10.1007/s00425-006-0402-1

    Article  CAS  PubMed  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59(1):735–769

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Skała .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Skała, E., Sitarek, P. (2020). Hairy Roots as a Source of Tropane Alkaloids. In: Srivastava, V., Mehrotra, S., Mishra, S. (eds) Hairy Root Cultures Based Applications. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4055-4_2

Download citation

Publish with us

Policies and ethics